设0<a<1,f(logax)=a(x2-1)(a2-1)x,(Ⅰ)求f(x)的表达式,并指出其奇偶性、单调性(不必写出证明过程);(Ⅱ)解关于x的不等式:f(ax)+f(-2)>f(2)+f(-ax

题目简介

设0<a<1,f(logax)=a(x2-1)(a2-1)x,(Ⅰ)求f(x)的表达式,并指出其奇偶性、单调性(不必写出证明过程);(Ⅱ)解关于x的不等式:f(ax)+f(-2)>f(2)+f(-ax

题目详情

设0<a<1,f(logax)=
a(x2-1)
(a2-1)x

(Ⅰ)求f(x)的表达式,并指出其奇偶性、单调性(不必写出证明过程);
(Ⅱ)解关于x的不等式:f(ax)+f(-2)>f(2)+f(-ax
(Ⅲ)(理)当n∈N时,比较f(n)与n的大小.
(文)若f(x)-4的值仅在x<2时取负数,求a的取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)令t=logax,则x=at,∴f(t)=
a(a2t-1)
(a2-1)at
,∴f(x)=class="stub"a
a2-1
(ax-a-x
),x∈R.(2分)     
∵f(-x)=f(x),∴奇函数.∵0<a<1,∴函数为增函数(2分)
(Ⅱ)∵f(ax)-f(2)>f(2)-f(ax)
∴f(ax)>f(2),ax>2,
∵0<a<1,∴x<loga2(4分)
(Ⅲ)(理料)f(1)=1,(1分)
当n≥2时,f(n)=class="stub"1
an
a[1-(a2)n]
1-a2
=class="stub"1
an
(a+a3+a5+
…a2n-1,)
=class="stub"1
2an
[(a+a2n-1)+(a3+a2n-3)
+…+(a2n-1+a)]>class="stub"1
2an
•n•2an=n(∵0<a<1)
(5分)
或用数学归纳法证明:f(k+1)=af(k)+a-k>ak+ak-k∵0<a<1,
∴可令class="stub"1
a
=1+α,α>0
,∴ka+a-k>ka+(1+α)n≥ka+1+kα=k(a+class="stub"1
a
-1)+1>k+1

(文科)∵f(x)<4⇔x<2⇔f(x)<f(2)∴f(2)=4,a=2-
3
(6分)

更多内容推荐