已知数列{an}中,a1=2,对于任意的p,q∈N+,有ap+q=ap+aq,数列{bn}满足:an=b12+1-b222+1+b323+1-b424+1+…+(-1)n-1bn2n+1,(n∈N•)

题目简介

已知数列{an}中,a1=2,对于任意的p,q∈N+,有ap+q=ap+aq,数列{bn}满足:an=b12+1-b222+1+b323+1-b424+1+…+(-1)n-1bn2n+1,(n∈N•)

题目详情

已知数列{an}中,a1=2,对于任意的p,q∈N+,有ap+q=ap+aq,数列{bn}满足:an=
b1
2+1
-
b2
22+1
+
b3
23+1
-
b4
24+1
+…+(-1)n-1
bn
2n+1
,(n∈N),
(1)求数列{an}的通项公式和数列{bn}的通项公式;
(2)设Cn=3nbn(n∈N),是否存在实数λ,当n∈N+时,Cn+1>Cn恒成立,若存在,求实数λ的取值范围,若不存在,请说明理由.
题型:解答题难度:中档来源:不详

答案

(1)取p=n,q=1,则an+1=an+a1=an+2
∴an+1-an=2(n∈N*)
∴{an}是公差为2,首项为2的等差数列
∴an=2n
an=
b1
2+1
-
b2
22+1
+
b3
23+1
-
b4
24+1
+…+(-1)n-1
bn
2n+1
(n≥1)①
an-1=
b1
2+1
-
b2
22+1
+
b3
23+1
-
b4
24+1
+…+(-1)n-2
bn-1
2n-1+1
(n≥2)②
①-②得:(-1)n-1
bn
2n+1
=2
(n≥2)bn=(-1)n-1(2n+1+2)(n≥2)
当n=1时,a1=
b1
3
∴b1=6满足上式
∴bn=(-1)n-1(2n+1+2)(n∈N*)
(2)Cn=3n+(-1)n-1(2n+1+2)•λ
假设存在λ,使Cn+1>Cn(n∈N*)3n+1+(-1)n(2n+2+2)•λ>3n+(-1)n-1(2n+1+2)•λ[(-1)n(2n+2+2)-(-1)n-1(2n+1+2)]•λ>3n-3n+1=-2•3n(-1)n(3•2n+1+4)•λ>-2•3n
当n为正偶函数时,(3•2n+1+4)λ>-2•3n恒成立λ>(-
3n
3•2n+2
)max=(-class="stub"1
3•(class="stub"2
3
)n+2•(class="stub"1
3
)n
)max
当n=2时(-class="stub"1
3•(class="stub"2
3
)n+2•(class="stub"1
3
)n
)max=-class="stub"9
14

∴λ>-class="stub"9
14

当n为正奇数时,-(3•2n+1+4)•λ>-2•3n恒成立
∴λ<(
3n
3•2n+2
)min=(class="stub"1
3•(class="stub"2
3
)n+2•(class="stub"1
3
)n
)min
当n=1时[class="stub"1
3•(class="stub"2
3
)n+2•(class="stub"1
3
)n
]min=class="stub"3
8

∴λ<class="stub"3
8

综上,存在实数λ,且λ∈(-class="stub"9
14
class="stub"3
8
)(16分)

更多内容推荐