已知函数f(x)满足f(m+n)=f(m)f(n),f(1)=4,则f2(1)+f(2)f(1)+f2(2)+f(4)f(3)+f2(3)+f(6)f(5)+f2(4)+f(8)f(7)+f2(5)+

题目简介

已知函数f(x)满足f(m+n)=f(m)f(n),f(1)=4,则f2(1)+f(2)f(1)+f2(2)+f(4)f(3)+f2(3)+f(6)f(5)+f2(4)+f(8)f(7)+f2(5)+

题目详情

已知函数f(x)满足f(m+n)=f(m)f(n),f(1)=4,则
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
+
f2(5)+f(10)
f(9)
=______.
题型:填空题难度:中档来源:不详

答案

∵函数f(x)满足f(m+n)=f(m)f(n),
∴令m=n,得f(2n)=f(n)f(n),即f(2n)=f2(n),
因此f(2)=f2(1),f(4)=f2(2),f(6)=f2(3),f(8)=f2(4),f(10)=f2(5),
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f (6)
f(5)
+
f2(4)+f(8)
f(7)
+
f2(5)+f(10)
f(9)

=
2f2(1)
f(1)
+
2f2(2)
f(3)
+
2f2(3)
f(5)
+
2f2(4)
f(7)
+
2f2(5)
f(9)

又∵f2(n)=f(n)f(n)=f(n+n)=f(2n-1+1)=f(2n-1)•f(1)
f2(n)
f(2n-1)
=f(1),可得
2f2(1)
f(1)
=
2f2(2)
f(3)
=
2f2(3)
f(5)
=
2f2(4)
f(7)
=
2f2(5)
f(9)
=2f(1)=8,
因此,
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f (6)
f(5)
+
f2(4)+f(8)
f(7)
+
f2(5)+f(10)
f(9)
=5×8=40
故答案为:40

更多内容推荐