设f(x)=xa(x+2),x=f(x)有唯一解,f(x1)=11003,f(xn)=xn+1(n∈N*).(Ⅰ)求x2004的值;(Ⅱ)若an=4xn-4009,且bn=a2n+1+a2n2an+1

题目简介

设f(x)=xa(x+2),x=f(x)有唯一解,f(x1)=11003,f(xn)=xn+1(n∈N*).(Ⅰ)求x2004的值;(Ⅱ)若an=4xn-4009,且bn=a2n+1+a2n2an+1

题目详情

f(x)=
x
a(x+2)
,x=f(x)有唯一解,f(x1)=
1
1003
,f(xn)=xn+1(n∈N*).
(Ⅰ)求x2004的值;
(Ⅱ)若an=
4
xn
-4009
,且bn=
a2n+1
+
a2n
2an+1an
(n∈N*)
,求证:b1+b2+…+bn-n<1;
(Ⅲ)是否存在最小整数m,使得对于任意n∈N*有xn
m
2005
成立,若存在,求出m的值;若不存在,说明理由.
题型:解答题难度:中档来源:重庆一模

答案

解(Ⅰ)由x=class="stub"x
a(x+2)
,可以化为ax(x+2)=x,
∴ax2+(2a-1)x=0,
由△=(2a-1)2=0得
当且仅当a=class="stub"1
2
时,x=f(x)有惟一解x=0,
从而f(x)=class="stub"2x
x+2
…(1分)
又由已知f(xn)=xn+1得:
2xn
xn+2
=xn+1

class="stub"1
xn+1
=class="stub"1
2
+class="stub"1
xn

class="stub"1
xn+1
-class="stub"1
xn
=class="stub"1
2
(n∈N*)

∴数列{class="stub"1
xn
}
是首项为class="stub"1
x1
,公差为class="stub"1
2
的等差数列…(3分)
class="stub"1
xn
=class="stub"1
x1
+class="stub"n-1
2
=
2+(n-1)x1
2x1

xn=
2x1
(n-1)x1+2

又∵f(x1)=class="stub"1
1003

2x1
x1+2
=class="stub"1
1003
,即x1=class="stub"2
2005
…(4分)
xn=
2×class="stub"2
2005
(n-1)•class="stub"2
2005
+2
=class="stub"2
n+2004
…(5分)
x2004=class="stub"2
2004+2004
=class="stub"1
2004
…(6分)
(Ⅱ)证明:∵xn=class="stub"2
n+2004

an=class="stub"n+2004
2
×4-4009=2n-1
…(7分)
bn=
a2n
+
a2n-1
2anan+1
=
(2n-1)2+(2n+1)2
2(2n-1)(2n+1)
=
4n2+1
4n2-1

=1+class="stub"2
(2n-1)(2n+1)
=1+class="stub"1
2n-1
-class="stub"1
2n+1
…(8分)
b1+b2+…+bn-n=(1+1-class="stub"1
3
)+(1+class="stub"1
3
-class="stub"1
5
)+…+(1+class="stub"1
2n-1
-class="stub"1
2n+1
)-n

=1-class="stub"1
2n+1
<1
…(10分)
(Ⅲ)由于xn=class="stub"2
n+2004
,若class="stub"2
n+2004
<class="stub"m
2005
(n∈N*)
恒成立,
(class="stub"2
n+2004
)max=class="stub"2
2005

class="stub"m
2005
>class="stub"2
2005

∴m>2,而m为最小正整数,
∴m=3…(12分)

更多内容推荐