已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距。(1)用a和n表示f(n);(2)求对所有n都有成立的a的最小值;(3)当0<a<1时-高三

题目简介

已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距。(1)用a和n表示f(n);(2)求对所有n都有成立的a的最小值;(3)当0<a<1时-高三

题目详情

已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距。
(1)用a和n表示f(n);
(2)求对所有n都有成立的a的最小值;
(3)当0<a<1时,比较的大小,并说明理由。
题型:解答题难度:偏难来源:高考真题

答案

解:(1)∵抛物线与x轴正半轴相交于点A,
∴A()对求导得y′=-2x
∴抛物线在点A处的切线方程为

∴f(n)为该抛物线在点A处的切线在y轴上的截距,
∴f(n)=an;
(2)由(1)知f(n)=an,则成立的充要条件是an≥2n+1
即知,an≥2n+1对所有n成立,
特别的,取n=1得到a≥3
当a=3,n≥1时,an=3n=(1+2)n≥1+=2n+1
当n=0时,an=2n+1
∴a=3时,对所有n都有成立
∴a的最小值为3;
(3)由(1)知f(k)=ak,
下面证明:
首先证明:当0<x<1时,
设函数g(x)=6x(x2-x)+1,0<x<1,
则g′(x)=18x(x-
当0<x<时,g′(x)<0;
时,g′(x)>0
故函数g(x)在区间(0,1)上的最小值g(x)min=g()=>0
∴当0<x<1时,g(x)>0,

由0<a<1知0<ak<1,因此
从而
=>6(a+a2+…+an)
==

更多内容推荐