设数列an的前n项的和为Sn,a1=32,Sn=2an+1-3.(1)求a2,a3;(2)求数列an的通项公式;(3)设bn=(2log32an+1)•an,求数列bn的前n项的和Tn.-数学

题目简介

设数列an的前n项的和为Sn,a1=32,Sn=2an+1-3.(1)求a2,a3;(2)求数列an的通项公式;(3)设bn=(2log32an+1)•an,求数列bn的前n项的和Tn.-数学

题目详情

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn
题型:解答题难度:中档来源:眉山一模

答案

解(1)∵a1=class="stub"3
2
Sn=2an+1-3

∴S1=2a2-3
a2=
a1+3
2
=class="stub"9
4
(1分)
同理S2=2a3-3
a3=
a1+a2+3
2
=class="stub"27
8
.(2分)
(2)当n≥2时,an=Sn-Sn-1=2an+1-3-(2an-3)
an+1=class="stub"3
2
an
.(4分)
由(1)显然a2=class="stub"3
2
a1
(5分)
∴an是以a1=class="stub"3
2
为首项class="stub"3
2
为公比的等比数列
an=(class="stub"3
2
)n
(6分)
(3)由(2)知bn=(2logclass="stub"3
2
an+1)•an=[2logclass="stub"3
2
(class="stub"3
2
)n+1]•(class="stub"3
2
)n=(2n+1)•(class="stub"3
2
)n
..(7分)Tn=3•(class="stub"3
2
)
1
+5•(class="stub"3
2
)
2
+7•(class="stub"3
2
)
3
++(2n-1)•(class="stub"3
2
)
n-1
+(2n+1)•(class="stub"3
2
)
n


class="stub"3
2
Tn=3•(class="stub"3
2
)
2
+5•(class="stub"3
2
)
3
+7•(class="stub"3
2
)
4
++(2n-1)•(class="stub"3
2
)
n
+(2n+1)•(class="stub"3
2
)
n+1
②(8分)

①-②得
-class="stub"1
2
Tn=class="stub"9
2
+2•(class="stub"3
2
)
2
+2•(class="stub"3
2
)
3
++2•(class="stub"3
2
)
n-1
-(2n+1)•(class="stub"3
2
)
n+1
=class="stub"9
2
+2[(class="stub"3
2
)
2
+(class="stub"3
2
)
3
++(class="stub"3
2
)
n-1
]-(2n+1)•(class="stub"3
2
)
n+1
=class="stub"9
2
+2×
class="stub"9
4
[1-(class="stub"3
2
)
n-1
]
1-class="stub"3
2
-(2n+1)•(class="stub"3
2
)
n+1
=(class="stub"9
2
-3n)•(class="stub"3
2
)
n
-class="stub"9
2
(11分)


Tn=(6n-9)•(class="stub"3
2
)n+9
(12分)

更多内容推荐