记数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1.已知数列{bn}满足bn-2=3log3an.(Ⅰ)求{an}和{bn}的通项公式;(Ⅱ)设cn=an•bn,求数列{cn}的前n项和

题目简介

记数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1.已知数列{bn}满足bn-2=3log3an.(Ⅰ)求{an}和{bn}的通项公式;(Ⅱ)设cn=an•bn,求数列{cn}的前n项和

题目详情

记数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1.已知数列{bn}满足bn-2=3log3an
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)设cn=an•bn,求数列{cn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由an+1=2Sn+1,得an=2Sn-1+1,(n≥2)
两式相减,得an+1-an=2an,an+1=3an,(n≥2)
又a2=2S1+1,∴a2=3a1.
所以{an}是首项为1,公比为3的等比数列.
∴an=3n-1.…(4分)
又∵bn=3log3an+2=3log33n-1+2=3(n-1)+2=3n-1.
∴bn=3n-1..…(7分)
(Ⅱ)由(Ⅰ),得cn=(3n-1)×3n-1..…(8分)
∴Tn=2×1+5×31+8×32+…+(3n-4)×3n-2+(3n-1)×3n-1,…(9分)
3Tn=2×3+5×32+8×33+…+(3n-4)×3n-1+(3n-1)×3n,
两式相减,得:-2Tn=2+3×3+3×32+…+3×3n-1-(3n-1)×3n=-class="stub"1
2
-class="stub"6n-5
2
×3n

Tn=class="stub"1
4
+class="stub"6n-5
4
3n
…(13分)
应改为:-2Tn=2+3×3+3×32+…+3×3n-1-(3n-1)×3n=-class="stub"5
2
-class="stub"6n-5
2
×3n

Tn=class="stub"5
4
+class="stub"6n-5
4
3n
…(13分)

更多内容推荐