设x,y是正实数,且x+y=1,则x2x+2+y2y+1的最小值是______.-数学

题目简介

设x,y是正实数,且x+y=1,则x2x+2+y2y+1的最小值是______.-数学

题目详情

设x,y是正实数,且x+y=1,则
x2
x+2
+
y2
y+1
的最小值是______.
题型:填空题难度:偏易来源:不详

答案

设x+2=s,y+1=t,则s+t=x+y+3=4,
所以
x2
x+2
+
y2
y+1
=
(s-2)2
s
+
(t-1)2
t
=(s-4+class="stub"4
s
)+(t-2+class="stub"1
t
)
=(s+t)+(class="stub"4
s
+class="stub"1
t
)-6=(class="stub"4
s
+class="stub"1
t
)-2

因为class="stub"4
s
+class="stub"1
t
=class="stub"1
4
(class="stub"4
s
+class="stub"1
t
)(s+t)=class="stub"1
4
(class="stub"4t
s
+class="stub"s
t
+5)≥class="stub"9
4

所以
x2
x+2
+
y2
y+1
≥class="stub"1
4

故答案为class="stub"1
4

更多内容推荐