已知tan(α+β)=12,tan(β-π4)=13,则sin(π4+α)•sin(π4-α)=______.-数学

题目简介

已知tan(α+β)=12,tan(β-π4)=13,则sin(π4+α)•sin(π4-α)=______.-数学

题目详情

已知tan(α+β)=
1
2
,tan(β-
π
4
)=
1
3
,则sin(
π
4
+α)•sin(
π
4
-α)
=______.
题型:填空题难度:中档来源:不详

答案

tan(α+β)=class="stub"1
2
,tan(β-class="stub"π
4
)=class="stub"1
3
,∴tan(α+class="stub"π
4
)
=tan[(α+β)-(β-class="stub"π
4
)]
=
tan(α+β)-tan(β-class="stub"π
4
)
1+tan(α+β)tan(β-class="stub"π
4
)
=
class="stub"1
2
-class="stub"1
3
1+class="stub"1
2
×class="stub"1
3
=class="stub"1
7

tanα=tan(α+class="stub"π
4
-class="stub"π
4
)
=
tan(α+class="stub"π
4
)-tanclass="stub"π
4
1+tan(α+class="stub"π
4
)tanclass="stub"π
4
=
class="stub"1
7
-1
1+class="stub"1
7
=-class="stub"3
4

sin(class="stub"π
4
+α)•sin(class="stub"π
4
-α)
=
2
2
(cosα+sinα)•
2
2
(cosα-sinα)
=class="stub"1
2
(cos2α-sin2α)
=class="stub"1
2
×
cos2α-sin2α
cos2α+sin2α
=class="stub"1
2
×
1-tan2α
1+tan2α
=class="stub"1
2
×
1-(-class="stub"3
4
)2
1+(-class="stub"3
4
)2
=class="stub"7
50

故答案为class="stub"7
50

更多内容推荐