在数列{an}中,a1=1,an+1=anc•an+1(c为常数,n∈N*),且a1,a2,a5成公比不为1的等比数列.(Ⅰ)求证:数列{1an}是等差数列;(Ⅱ)求c的值;(Ⅲ)设bn=anan+1

题目简介

在数列{an}中,a1=1,an+1=anc•an+1(c为常数,n∈N*),且a1,a2,a5成公比不为1的等比数列.(Ⅰ)求证:数列{1an}是等差数列;(Ⅱ)求c的值;(Ⅲ)设bn=anan+1

题目详情

在数列{an}中,a1=1,an+1=
an
c•an+1
(c为常数,n∈N*),且a1,a2,a5成公比不为1的等比数列.
(Ⅰ)求证:数列{
1
an
}
是等差数列;
(Ⅱ)求c的值;
(Ⅲ)设bn=anan+1,求数列{bn}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)因为a1=1,an+1=
an
c•an+1
,所以an≠0,
class="stub"1
an+1
-class="stub"1
an
=
c•an+1
an
-class="stub"1
an
=c
,又c为常数,
∴数列{class="stub"1
an
}
是等差数列;
(Ⅱ)由(Ⅰ)可知class="stub"1
an
=class="stub"1
a1
+(n-1)c=1+(n-1)c

∵a1=1,∴a2=class="stub"1
1+c
,a5=class="stub"1
1+4c

∵a1,a2,a5成公比不为1的等比数列,所以(class="stub"1
1+c
)
2
=class="stub"1
1+4c

解得c=0或c=2,当c=0时,an=an+1,不满足题意,舍去,
所以c的值为2;
(Ⅲ)由(Ⅱ)可知c=2,∴an=class="stub"1
2n-1

bn=anan+1=class="stub"1
2n-1
•class="stub"1
2n+1
=class="stub"1
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)

所以数列{bn}的前n项和
Sn=class="stub"1
2
[(1-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
5
)+…+(class="stub"1
2n-1
-class="stub"1
2n+1
)]
=class="stub"1
2
(1-class="stub"1
2n+1
)

更多内容推荐