优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知函数f(x)=lnx,g(x)=12x2+mx+72(m<0),(I)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1,求直线l的方程及m的值;(Ⅱ)若h(x
已知函数f(x)=lnx,g(x)=12x2+mx+72(m<0),(I)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1,求直线l的方程及m的值;(Ⅱ)若h(x
题目简介
已知函数f(x)=lnx,g(x)=12x2+mx+72(m<0),(I)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1,求直线l的方程及m的值;(Ⅱ)若h(x
题目详情
已知函数f(x)=lnx,g(x)=
1
2
x
2
+mx+
7
2
(m<0),
(I)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1,求直线l的方程及m的值;
(Ⅱ)若h(x)=f(x+1)-g′(x)其中g′(x)是g(x)的导函数,求函数h(x)的最大值;
(Ⅲ)当0<a<b,求证:f(a+b)-f(2b)
<
a-b
2b
.
题型:解答题
难度:中档
来源:不详
答案
(Ⅰ)依题意知,直线l是函数f(x)=lnx在(1,0)处的切线方程,故其斜率k=f'(1)=1,
所以直线l的方程为y=x-1.
又因为直线l与g(x)的图象相切,所以由
y=x-1
y=
class="stub"1
2
x
2
+mx+
class="stub"7
2
,得
class="stub"1
2
x
2
+(m-1)x+
class="stub"9
2
=0
,
得△=(m-1)2-9=0,解得m=-2或m=4(舍去).
(Ⅱ)因为h(x)=f(x+1)-g′(x)=ln(x+1)-x-m,(x>-1),
所以
h′(x)=
class="stub"1
x+1
-1=-
class="stub"x
x+1
,当-1<x<0时,h'(x)>0,此时函数单调递增,
当x>0时,h'(x)<0,此时函数单调递减,
因此,当x=0时,函数h(x)取得最大值h(0)=-m.
(Ⅲ)由(Ⅱ)知,取m=-1,
当-1<x<0时,h(x)<2,即ln(1+x)<x,
当0<a<b时,
-1<
class="stub"a-b
2b
<0
.
因此有f(a+b)-f(2b)=ln
class="stub"a+b
2b
=ln(1+
class="stub"a-b
2b
)<
class="stub"a-b
2b
.
所以不等式成立.
上一篇 :
某商品每件成本9元,售价30元,每
下一篇 :
已知f(x)=x3+ax2-2x是奇函数,则其
搜索答案
更多内容推荐
给出下列命题:(1)常数列既是等差数列,又是等比数列;(2)实数等差数列中,若公差d<0,则数列必是递减数列;(3)实数等比数列中,若公比q>1,则数列必是递增数列;(4)limn→∞(2-数学
已知函数,x=2是f(x)的一个极值点.(1)求函数f(x)的单调区间;(2)若当x∈[1,+∞)时,恒成立,求a的取值范围.-高三数学
已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距。(1)用a和n表示f(n);(2)求对所有n都有成立的a的最小值;(3)当0<a<1时-高三
曲线y=4x-x3在点(-1,-3)处的切线方程是______.-数学
设函数y=f(x)对任意实数x,都有f(x)=2f(x+1),当x∈[0,1]时,f(x)=274x2(1-x).(Ⅰ)已知n∈N+,当x∈[n,n+1]时,求y=f(x)的解析式;(Ⅱ)求证:对于任
设直线l:y=5x+4是曲线C:f(x)=13x3-x2+2x+m的一条切线,g(x)=ax2+2x-23.(Ⅰ)求切点坐标及m的值;(Ⅱ)当m∈Z时,存在x∈[0,+∞)使f(x)≤g(x)成立,求
函数f(x)=x2在点(2,f(2))处的切线方程为()A.y=4x-4B.y=4x+4C.y=4x+2D.y=4-数学
设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为[]A.1B.C.D.-高三数学
已知函数f(x)=2ax3﹣3x2,其中a>0.(Ⅰ)求证:函数f(x)在区间(﹣∞,0)上是增函数;(Ⅱ)若函数g(x)=f(x)+f′(x)(x∈[0,1])在x=0处取得最大值,求a的取值范围.
如图,已知抛物线E:y2=x与圆M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四个点,(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.-高三数学
曲线y=12x2+12在点(-1,1)处的切线方程为()A.x-y=0B.x+y=0C.x+y-2=0D.x-y-2=0-数学
曲线y=ex在点P(0,1)处的切线的方程为______.-数学
已知函数f(x)=ex(x2+ax﹣a),其中a是常数.(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若存在实数k,使得关于x的方程f(x)=k在[0,+∞)上有两个不相
已知函数1nx,且m>0.(Ⅰ)若函数f(x)在[1,+∞)上是增函数,求m的取值范围;(Ⅱ)求函数f(x)在[1,e]的最大值和最小值.-高二数学
已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值(1)求函数f(x)的解析式;(2)求证:对于区间[﹣1,1]上任意两个自变量的值x1,x2,都有|f(x1)﹣f(x2)|≤4;(3)若过点
已知函数f(x)=ax2+1(a>0),g(x)=x3+bx。(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;(2)当a2=4b时,求函数f(x)+g(x
已知数列{an}是由正整数组成的数列,a1=4且满足lgan=lgan-1+lgb,其中b>3,n>1,且n∈N+,则limn→∞3n-1-an3n-1+an等于()A.-1B.1C.14D.16-数
已知limn→∞(1+1n)n=e,则limn→∞(1+1n-2)2n=()A.eB.2eC.e2D.e4-数学
已知a,b,c∈R,且三次方程f(x)=x3-ax2+bx-c=0有三个实根x1,x2,x3.(1)类比一元二次方程根与系数的关系,写出此方程根与系数的关系;(2)若a∈Z,b∈Z且|b|<2,f(x
曲线y=x3+x-2在点P0处的切线平行于直线y=4x-1,则点P0点的坐标可为()A.(0,1)B.(1,0)C.(-1,0)D.(1,4)-数学
已知函数f(x)=ax3-x,其中a≤13.(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)求函数f(x)在[-1,1]上的最大值.-数学
已知函数(a∈R).(Ⅰ)当时,讨论f(x)的单调性;(Ⅱ)设g(x)=x2﹣2bx+4.当时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.-高三数学
已知函数f(x)=xlnx.(1)求函数f(x)的单调区间和最小值;(2)若函数F(x)=在[1,e]上是最小值为,求a的值;(3)当b>0时,求证:(其中e=2.71828…是自然对数的底数).-高
曲线y=2x-lnx在点(1,2)处的切线方程为()A.y=-x-1B.y=-x+3C.y=x+1D.y=x-1-数学
已知函数f(x)的导数f'(x)=(x+1)2(x-1)(x-2),则函数f(x)的极值点的个数为()A.1个B.2个C.3个D.4个-数学
已知数列{an}的首项a1≠0,其前n项的和为Sn,且Sn+1=2Sn+a1,则limn→∞anSn=()A.0B.12C.1D.2-数学
设函数f(x)=x3-3x+1(x∈R).(1)求f(x)在点P(2,3)处的切线方程;(2)求f(x)在区间[-3,3]的最大值与最小值.-数学
已知f(x)=1ex-ex,则f(x)的所有切线的斜率的最大值为______.-数学
已知函数f(x)在R上满足f(x)=2f(8-x)-x2+11x-18,则曲线y=f(x)在点(4,f(4))处的切线方程是()A.y=3x-22B.y=4x-2C.y=2x-18D.y=x-14-数
已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16。(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值。-高三数学
曲线y=e-2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为______.-数学
已知函数f(x)=x3-3a2x+b(a,b∈R)在x=2处的切线方程为y=9x-14.(1)求函数f(x)的解析式;(2)令函数g(x)=x2-2x+k①若存在x1,x2∈[0,2],使得f(x1)
设函数f(x)=lnx-12ax2-bx.(Ⅰ)当a=b=12时,求f(x)的最大值;(Ⅱ)令F(x)=f(x)+12ax2+bx+ax,(0<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k
曲线y=sinxsinx+cosx-12在点M(π4,0)处的切线的斜率为()A.-12B.12C.-22D.22-数学
曲线y=1x在点(2,12)处的切线的斜率为______.-数学
函数f(x)=x3+x2-3x-9,已知f(x)的两个极值点为x1,x2,则x1•x2=()A.-1B.-9C.1D.9-数学
已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处切线的斜率;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈
设动直线x=m与函数f(x)=x3,g(x)=lnx的图象分别交于点M、N,则|MN|的最小值为[]A.B.C.D.ln3﹣1-高三数学
(1)设函数f(x)=xlnx+(1﹣x)ln(1﹣x)(0<x<1),求f(x)的最小值;(2)设正数满足=1,求证:≥﹣n.-高三数学
过原点向曲线y=x3+2x2+a可作三条切线,则实数a的取值范围是______.-数学
曲线y=x3-x的所有切线中,经过点(1,0)的切线的条数是()A.0B.1C.2D.3-数学
已知函数f(x)=xe-x(x∈R).(1)求函数f(x)在x=1的切线方程;(2)求函数f(x)的单调区间和极值.-数学
设函数f(x)=ex-ax-2。(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值。-高三数学
在R上的可导函数f(x)=13x3+12ax2+2bx+c,当x∈(0,1)时取得极大值,当x∈(1,2)时取得极小值,则b-2a-1的范围是______.-数学
某次测验有10道备用试题,甲同学在这10道题中能够答对6题,现在备用试题中随机抽考5题,规定答对4题或5题为优秀,答对3题为合格.求甲同学获优秀的概率.-数学
函数y=2sinx-3图象上的一点P的横坐标为π3,则点P处的切线方程为______.-数学
某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a(3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x≤11)元时,一年的销售量为(12﹣x)2万件.(1)求-高三数学
已知函数f(x)=(x2﹣3x+3)ex,设t>﹣2,f(﹣2)=m,f(t)=n.(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(2)试判断m,n的大小并说明理由;(3)求证
设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x﹣6y﹣7=0垂直,导函数f'(x)的最小值为﹣12.(Ⅰ)求a,b,c的值;(Ⅱ)求函数f(x
已知曲线f(x)=2x3上一点P(1,2),则过点P的切线方程为______.-数学
返回顶部
题目简介
已知函数f(x)=lnx,g(x)=12x2+mx+72(m<0),(I)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1,求直线l的方程及m的值;(Ⅱ)若h(x
题目详情
(I)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1,求直线l的方程及m的值;
(Ⅱ)若h(x)=f(x+1)-g′(x)其中g′(x)是g(x)的导函数,求函数h(x)的最大值;
(Ⅲ)当0<a<b,求证:f(a+b)-f(2b)<
答案
所以直线l的方程为y=x-1.
又因为直线l与g(x)的图象相切,所以由
得△=(m-1)2-9=0,解得m=-2或m=4(舍去).
(Ⅱ)因为h(x)=f(x+1)-g′(x)=ln(x+1)-x-m,(x>-1),
所以h′(x)=
当x>0时,h'(x)<0,此时函数单调递减,
因此,当x=0时,函数h(x)取得最大值h(0)=-m.
(Ⅲ)由(Ⅱ)知,取m=-1,
当-1<x<0时,h(x)<2,即ln(1+x)<x,
当0<a<b时,-1<
因此有f(a+b)-f(2b)=ln
所以不等式成立.