在△ABC中,内角A,B,C的对边长分别为a,b,c,且满足A+C=3B,cos(B+C)=-35.(Ⅰ)求sinC的值;(Ⅱ)若a=5,求△ABC的面积.-数学

题目简介

在△ABC中,内角A,B,C的对边长分别为a,b,c,且满足A+C=3B,cos(B+C)=-35.(Ⅰ)求sinC的值;(Ⅱ)若a=5,求△ABC的面积.-数学

题目详情

在△ABC中,内角A,B,C的对边长分别为a,b,c,且满足A+C=3B,cos(B+C)=-
3
5

(Ⅰ)求sinC的值;
(Ⅱ)若a=5,求△ABC的面积.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由A+C=π-B=3B⇒B=class="stub"π
4
,---------------(1分)
所以cos(B+C)=cos(class="stub"π
4
+C)=-class="stub"3
5
,--------------(2分)
因为sin(B+C)=sin(class="stub"π
4
+C)=
1-cos2(class="stub"π
4
+C)
=class="stub"4
5
,-------------(4分)
所以sinC=sin[(class="stub"π
4
+C)-class="stub"π
4
]=sin(class="stub"π
4
+C)cosclass="stub"π
4
-cos(class="stub"π
4
+C)sinclass="stub"π
4
=class="stub"4
5
×
2
2
+class="stub"3
5
×
2
2
=
7
2
10
.-----(7分)
(Ⅱ)由已知得sinA=sin(B+C)=
1-cos2(B+C)
=class="stub"4
5
,-------------(8分)
因为a=5 , B=class="stub"π
4
 , sinC=
7
2
10

所以由正弦定理class="stub"a
sinA
=class="stub"b
sinB
=class="stub"c
sinC
class="stub"b
2
2
=class="stub"c
7
2
10
=class="stub"5
class="stub"4
5
=class="stub"25
4

解得b=
25
2
8
 , c=
35
2
8
.-----------------(12分)
所以△ABC的面积S=class="stub"1
2
absinC=class="stub"1
2
×5×
25
2
8
×
7
2
10
=class="stub"175
16
.----------(14分)

更多内容推荐