若a=(3cosωx,sinωx),b=(sinωx,0),其中ω>0,函数f(x)=(a+b)•b+k.(1)若f(x)图象申相邻两条对称轴间的距离不小于π2,求ω的取值范围.(2)若f(x)的最小

题目简介

若a=(3cosωx,sinωx),b=(sinωx,0),其中ω>0,函数f(x)=(a+b)•b+k.(1)若f(x)图象申相邻两条对称轴间的距离不小于π2,求ω的取值范围.(2)若f(x)的最小

题目详情

a
=(
3
cosωx,sinωx),
b
=(sinωx,0)
,其中ω>0,函数f(x)=(
a
+
b
)•
b
+k

(1)若f(x)图象申相邻两条对称轴间的距离不小于
π
2
,求ω的取值范围.
(2)若f(x)的最小正周期为π,且当x∈[-
π
6
π
6
]
时,f(x)的最大值是
1
2
,求f(x)的解析式.
题型:解答题难度:中档来源:不详

答案

(1)∵
a
=(
3
cosωx,sinωx),
b
=(sinωx,0)

a
+
b
=(
3
cosωx+sinωx
,sinωx),
f(x)=(
a
+
b
)•
b
+k

=
3
sinωxcosωx+sin2ωx
+k
=
3
2
sin2ωx+class="stub"1-cos2ωx
2
+k

=
3
2
sin2ωx-class="stub"1
2
cos2ωx+class="stub"1
2
+k

=sin(2ωx-class="stub"π
6
)+k+class="stub"1
2

∵f(x)图象中相邻两条对称轴间的距离不小于class="stub"π
2

class="stub"T
2
=class="stub"π
≥class="stub"π
2
,∴ω≤1,
∵ω>0,∴0<ω≤1.
(2)∵T=class="stub"2π
,∴ω=1,
∴f(x)=sin(2x-class="stub"π
6
)+k+class="stub"1
2

∵x∈[-class="stub"π
6
class="stub"π
6
],
∴2x-class="stub"π
6
∈[-class="stub"π
2
class="stub"π
6
],
从而当2x-class="stub"π
6
=class="stub"π
6
,即x=class="stub"π
6
时,
f(x)max=f(class="stub"π
6
)
=sinclass="stub"π
6
+k+class="stub"1
2
=k+1=class="stub"1
2

∴k=-class="stub"1
2

故f(x)=sin(2x-class="stub"π
6
).

更多内容推荐