已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=()A.{x|x≤

题目简介

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=()A.{x|x≤

题目详情

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )
A.{x|x≤0或1≤x≤4}B.{x|0≤x≤4}
C.{x|x≤4}D.{x|0≤x≤1或x≥4}
题型:单选题难度:偏易来源:不详

答案

由题意,f(x)g(x)≥0等价于
f(x)≥0
g(x)≥0
f(x)≤0
g(x)≤0

∵f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,
x≥1
0≤x≤4
x≤1
x≤0或x≥4

∴1≤x≤4或x≤0
故选A.

更多内容推荐