已知点(1,)是函数f(x)=ax(a>0),且a≠1的图象上一点,等比数列{an}的前n项和为f(n)﹣c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn﹣Sn﹣1=+(n≥2).(1)

题目简介

已知点(1,)是函数f(x)=ax(a>0),且a≠1的图象上一点,等比数列{an}的前n项和为f(n)﹣c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn﹣Sn﹣1=+(n≥2).(1)

题目详情

已知点(1,)是函数f(x)=ax(a>0),且a≠1的图象上一点,
等比数列{an}的前n项和为f(n)﹣c,数列{bn}(bn>0)的首项为c,
且前n项和Sn满足Sn﹣Sn﹣1=+(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{}前n项和为Tn,问Tn的最小正整数n是多少?
题型:解答题难度:中档来源:同步题

答案

解:(1)由已知f(1)=a=,∴f(x)=
等比数列{an}的前n项和为f(n)﹣c=c,
∴a1=f(1)=﹣c,a2=[f(2)﹣c]﹣[f(1)﹣c]=﹣,a3=[f(3)﹣c]﹣[f(2)﹣c]=﹣
数列{an}是等比数列,应有=q,解得c=1,q=
∴首项a1=f(1)=﹣c=
∴等比数列{an}的通项公式为=
∵Sn﹣Sn﹣1==(n≥2)

又bn>0,>0,∴=1;
∴数列{ }构成一个首项为1,公差为1的等差数列,∴=1+(n﹣1)×1=n    
         ∴Sn=n2 当n=1时,b1=S1=1,
当n≥2时,bn=Sn﹣Sn﹣1=n2﹣(n﹣1)2=2n﹣1
又n=1时也适合上式,∴{bn}的通项公式bn=2n﹣1.
(2)==
==
,得
故满足的最小正整数为112.

更多内容推荐