已知各项均为正数的数列{an}满足a1=1,且.(Ⅰ)求a2,a3的值;(Ⅱ)求证:是等差数列;(Ⅲ)若,求数列{bn}的前n项和.-高三数学
解:各项均为正数的数列{an}满足a1=1,且.∴an+1·an(an+1+an)+(an+1+an)(an+1﹣an)=0(an+1+an)(an+1·an+an+1﹣an)=0∴an+1·an+an+1﹣an=0∴+1=0;∴=1.①(Ⅰ)∵=1+=2∴a2=;同理:a3=.(Ⅱ)由①得是首项为1,公差为1的等差数列;∴=1+(n﹣1)×1=n;∴an=.(Ⅲ)∵=2n+;{n·2n}的和Sn=1·21+2·22+…+n·2n …①,2·Sn=2·21+3·22+…+n·2n+1 …②,∴①﹣②得﹣Sn=21+22+23+…+2n﹣n·2n+1∴﹣Sn=﹣n×2n+1∴Sn=(n﹣1)2n+1+2;{}的和为:Tn=(1﹣)+()+…+()=1﹣=.∴数列{bn}的前n项和为:Sn+Tn=(n﹣1)2n+1+2+.
题目简介
已知各项均为正数的数列{an}满足a1=1,且.(Ⅰ)求a2,a3的值;(Ⅱ)求证:是等差数列;(Ⅲ)若,求数列{bn}的前n项和.-高三数学
题目详情
(Ⅰ)求a2,a3的值;
(Ⅱ)求证:
(Ⅲ)若
答案
解:各项均为正数的数列{an}满足a1=1,且
.
+1=0;
=1.①
=1+
=2
;同理:a3=
.
是首项为1,公差为1的等差数列;
=1+(n﹣1)×1=n;
.
=2n+
;
﹣n×2n+1
}的和为:Tn=(1﹣
)+(![]()
)+…+(
)=1﹣
=
.
.
∴an+1·an(an+1+an)+(an+1+an)(an+1﹣an)=0
(an+1+an)(an+1·an+an+1﹣an)=0
∴an+1·an+an+1﹣an=0
∴
∴
(Ⅰ)∵
∴a2=
(Ⅱ)由①得
∴
∴an=
(Ⅲ)∵
{n·2n}的和Sn=1·21+2·22+…+n·2n …①,
2·Sn=2·21+3·22+…+n·2n+1 …②,
∴①﹣②得﹣Sn=21+22+23+…+2n﹣n·2n+1
∴﹣Sn=
∴Sn=(n﹣1)2n+1+2;
{
∴数列{bn}的前n项和为:Sn+Tn=(n﹣1)2n+1+2+