已知数列{an}是首项为a1=12,公比q=12的等比数列.设bn+2=3log12an(n∈N*),数列{cn}满足cn=an•bn(I)求证:数列{bn}是等差数列;(II)求数列{cn}的前n项

题目简介

已知数列{an}是首项为a1=12,公比q=12的等比数列.设bn+2=3log12an(n∈N*),数列{cn}满足cn=an•bn(I)求证:数列{bn}是等差数列;(II)求数列{cn}的前n项

题目详情

已知数列{an}是首项为a1=
1
2
,公比q=
1
2
的等比数列.设bn+2=3log
1
2
an(n∈N*)
,数列{cn}满足cn=an•bn
(I)求证:数列{bn}是等差数列;
(II)求数列{cn}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(I)证明:∵a1=class="stub"1
2
,公比q=class="stub"1
2

∴an=class="stub"1
2
(class="stub"1
2
)
n-1
=(class="stub"1
2
)
n

logclass="stub"1
2
an=n,
又bn+2=3logclass="stub"1
2
an=3n,
∴bn=3n-2,b1=1,
∴bn+1=3(n+1)-2,
∴bn+1-bn=3,
∴{bn}是1为首项,3为公差的等差数列;
(II)由(Ⅰ)知bn=3n-2,an=(class="stub"1
2
)
n

∴cn=an•bn=(3n-2)•(class="stub"1
2
)
n

∴Sn=1×(class="stub"1
2
)
1
+4×(class="stub"1
2
)
2
+7×(class="stub"1
2
)
3
+…+(3n-2)×(class="stub"1
2
)
n

class="stub"1
2
Sn=1×(class="stub"1
2
)
2
+4×(class="stub"1
2
)
3
+7×(class="stub"1
2
)
4
+…+(3n-5)×(class="stub"1
2
)
n
+(3n-2)×(class="stub"1
2
)
n+1

故①-②得:class="stub"1
2
Sn=1×class="stub"1
2
+3×(class="stub"1
2
)
2
+3×(class="stub"1
2
)
3
+3×(class="stub"1
2
)
4
+…+3×(class="stub"1
2
)
n
-(3n-2)×(class="stub"1
2
)
n+1

class="stub"1
2
Sn=class="stub"1
2
+3×
(class="stub"1
2
)
2
[1-(class="stub"1
2
)
n-1
]
1-class="stub"1
2
-(3n-2)×(class="stub"1
2
)
n+1
=2-class="stub"4+3n
2n+1

∴Sn=4-class="stub"4+3n
2n

更多内容推荐