已知数列{an}、{bn}满足:a1=14,an+bn=1,bn+1=bn1-an2.(1)求a2,a3;(2)证数列{1an}为等差数列,并求数列{an}和{bn}的通项公式;(3)设Sn=a1a2

题目简介

已知数列{an}、{bn}满足:a1=14,an+bn=1,bn+1=bn1-an2.(1)求a2,a3;(2)证数列{1an}为等差数列,并求数列{an}和{bn}的通项公式;(3)设Sn=a1a2

题目详情

已知数列{ an}、{ bn}满足:a1=
1
4
an+bn=1,bn+1=
bn
1-an2

(1)求a2,a3
(2)证数列{
1
an
}为等差数列,并求数列{an}和{ bn}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数λ为何值时4λSn<bn恒成立.
题型:解答题难度:中档来源:不详

答案

(1)∵a1=class="stub"1
4
,∴b1=1-class="stub"1
4
=class="stub"3
4
b2=
b1
1-a12
=
class="stub"3
4
1-(class="stub"1
4
)2
=class="stub"4
5

a2=1-b2=1-class="stub"4
5
=class="stub"1
5
b3=
b2
1-a22
=
class="stub"4
5
1-(class="stub"1
5
)2
=class="stub"5
6
a3=1-b3=1-class="stub"5
6
=class="stub"1
6

a2=class="stub"1
5
a3=class="stub"1
6

(2)证明:由an+1+bn+1=1,bn+1=
bn
1-an2

1-an+1=bn+1=
bn
1-an2
=
1-an
(1-an)(1+an)
=class="stub"1
1+an

1-an+1=class="stub"1
1+an
,即an-an+1=anan+1,
class="stub"1
an+1
-class="stub"1
an
=1

∴数列{class="stub"1
an
}是以4为首项,1为公差的等差数列.
class="stub"1
an
=4+(n-1)=3+n
,则an=class="stub"1
n+3

bn=1-an=1-class="stub"1
n+3
=class="stub"n+2
n+3

(3)由an=class="stub"1
n+3

∴Sn=a1a2+a2a3+…+anan+1
=class="stub"1
4×5
+class="stub"1
5×6
+…+class="stub"1
(n+3)(n+4)

=class="stub"1
4
-class="stub"1
5
+class="stub"1
5
-class="stub"1
6
+…+class="stub"1
n+3
-class="stub"1
n+4

=class="stub"1
4
-class="stub"1
n+4
=class="stub"n
4(n+4)

Sn-bn=class="stub"λn
n+4
-class="stub"n+2
n+3
=
(λ-1)n2+(3λ-6)n-8
(n+3)(n+4)

要使4λSn<bn恒成立,只需(λ-1)n2+(3λ-6)n-8<0恒成立,
设f(n)=(λ-1)n2+3(λ-2)n-8
当λ=1时,f(n)=-3n-8<0恒成立,
当λ>1时,由二次函数的性质知f(n)不满足对于任意n∈N*恒成立,
当λ<l时,对称轴n=-class="stub"3
2
•class="stub"λ-2
λ-1
=-class="stub"3
2
(1-class="stub"1
λ-1
)<0

f(n)在[1,+∞)为单调递减函数.
只需f(1)=(λ-1)n2+(3λ-6)n-8=(λ-1)+(3λ-6)-8=4λ-15<0
λ<class="stub"15
4
,∴λ≤1时4λSn<bn恒成立.
综上知:λ≤1时,4λSn<bn恒成立.

更多内容推荐