设函数f(x)=2-3ex的图象与x轴相交于点P,求曲线在点P处的切线的方程,并说明你的解答中的主要步骤(三步).-数学

题目简介

设函数f(x)=2-3ex的图象与x轴相交于点P,求曲线在点P处的切线的方程,并说明你的解答中的主要步骤(三步).-数学

题目详情

设函数f(x)=2-3ex的图象与x轴相交于点P,求曲线在点P处的切线的方程,并说明你的解答中的主要步骤(三步).
题型:解答题难度:中档来源:不详

答案

∵点P在X轴上,∴设P(x0,0),(1分)
则切线斜率为f'(x0)(2分),
∵f(x)=2-3ex与X轴交于点P,则有0=2-3ex0,(3分)
ex0=class="stub"2
3
x0=lnclass="stub"2
3
,(5分)
∵f'(x)=-3ex,(7分)
切线斜率为f′(x0)=-3elnclass="stub"2
3
=-2,(8分)
∴切线方程为y-0=f′(x0)(x-x0)=-2(x-lnclass="stub"2
3
)
,即y=-2x+2lnclass="stub"2
3
.(10分)
第一步:求出点P坐标;
第二步:求出函数在x=x0处的导数,即切线的斜率;
第三步:求出切线方程.(12分,如果少了一步,或不够简明,扣1分)

更多内容推荐