已知偶函数f(x)在R上的任一取值都有导数,且f′(1)=1,f(x+2)=f(x-2),则曲线y=f(x)在x=-5处的切线的斜率为()A.2B.-2C.1D.-1-数学

题目简介

已知偶函数f(x)在R上的任一取值都有导数,且f′(1)=1,f(x+2)=f(x-2),则曲线y=f(x)在x=-5处的切线的斜率为()A.2B.-2C.1D.-1-数学

题目详情

已知偶函数f(x)在R上的任一取值都有导数,且f′(1)=1,f(x+2)=f(x-2),则曲线y=f(x)在x=-5处的切线的斜率为(  )
A.2B.-2C.1D.-1
题型:单选题难度:中档来源:不详

答案

由题意知,由f(x+2)=f(x-2),得f(x+4)=f(x),
∵f(x)在R上可导,
∴f′(x+4)(x+4)′=f′(x)(x)′,即f′(x+4)=f′(x)①,
∵f(x)为偶函数,∴f(-x)=f(x),
∴f′(-x)(-x)′=f′(x),即f′(-x)=-f′(x)②,
∴f′(-5)=f′(-1)=-f′(1)=-1,即所求切线的斜率为-1,
故选D.

更多内容推荐