在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…;②-数学

题目简介

在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…;②-数学

题目详情

在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…;②图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:cnm=Cnn-m
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.
题型:解答题难度:中档来源:不详

答案

(1)性质②所对应的组合数的另一个性质是
      
Cmn+1
=
Cmn
+
Cm-1n
   
(2)因为
Cmn+1
=
(n+1)!
m!(n+1-m)!

     
Cmn
+
Cm-1n
=class="stub"n!
m!(n-m)!
+class="stub"n!
(m-1)!(n+1-m)!
                 
=
n![(n+1-m)+m]
m!(n+1-m)!
=
n!(n+1)
m!(n+1-m)!
=
(n+1)!
m!(n+1-m)!

所以
Cmn+1
=
Cmn
+
Cm-1n

更多内容推荐