优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 昌九高速公路起于江西省南昌市蛟桥收费站,终于九江市荷花垄收费站,全长122km,假设某汽车从九江荷花垄进入高速公路后以不低于60km/h,且不高于120km/h的速度匀速行驶到南昌-高三数学
昌九高速公路起于江西省南昌市蛟桥收费站,终于九江市荷花垄收费站,全长122km,假设某汽车从九江荷花垄进入高速公路后以不低于60km/h,且不高于120km/h的速度匀速行驶到南昌-高三数学
题目简介
昌九高速公路起于江西省南昌市蛟桥收费站,终于九江市荷花垄收费站,全长122km,假设某汽车从九江荷花垄进入高速公路后以不低于60km/h,且不高于120km/h的速度匀速行驶到南昌-高三数学
题目详情
昌九高速公路起于江西省南昌市蛟桥收费站,终于九江市荷花垄收费站,全长122 km,假设某汽车从九江荷花垄进入高速公路后以不低于60 km/h,且不高于120 km/h的速度匀速行驶到南昌蛟桥收费站,已知汽车每小时的运输成本y(以元为单位)由固定部分和可变部分组成,固定部分为200元,可变部分与速度的平方成正比,当汽车以最快速度行驶时,每小时的运输成本为488元,若使汽车的全程运输成本最低,其速度为多少km/h
A.80
B.90
C.100
D.110
题型:单选题
难度:中档
来源:江西省模拟题
答案
C
上一篇 :
已知函数f(x)=-x2+8x,g(x)=6lnx+m。
下一篇 :
(1)已知函数f(x)=lnx-x+1,x∈(0
搜索答案
更多内容推荐
已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值为3,那么此函数在[-2,2]上的最小值是[]A.-37B.-29C.-5D.2-高三数学
某商店经销一种世博纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上缴5元的税收,设每件产品的日售价为x元(35≤x≤41),根据市场调查,日销售量与ex(e为自然-高三数学
已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.(Ⅰ)求函数f(x)的解析式;(Ⅱ)试证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|
设函数f(x)是定义在R上周期为2的可导函数,若f(2)=2,且limx→0f(x+2)-22x=-2,则曲线y=f(x)在点(0,f(0)处切线方程是()A.y=-2x+2B.y=-4x+2C.y=
二次函数y=x2-2x+2与y=-x2+ax+b(a>0,b>0)在它们的一个交点处切线互相垂直,则a+b的值为()A.12B.32C.52D.2-数学
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=(0<x≤120)。已知甲、乙两地相距100千米。(1)当汽车以40千米/小时-高三数学
已知函数f(x)=x2-mlnx+(m-1)x,m∈R;(1)当m=2时,求函数f(x)的最小值;(2)讨论f(x)的单调性。-高三数学
已知函数f(x)=ex-ex,(Ⅰ)求函数f(x)的最小值;(Ⅱ)对于函数h(x)=x2与g(x)=elnx,是否存在公共切线y=kx+b(常数k,b)使得h(x)≥kx+b和g(x)≤kx+b在函数
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11-高三数学
请您设计一个帐篷,它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示)。试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?-高三数学
已知函数f(x)=(2x+a)•ex(e为自然对数的底数).(1)求函数f(x)的极小值;(2)对区间[-1,1]内的一切实数x,都有-2≤f(x)≤e2成立,求实数a的取值范围.-数学
设曲线f(x)=x3-x上的点P0处的切线为2x-y=2,则点P0的坐标是()A.(1,0)B.(-1,0)C.(-1,-4)D.(1,0)或(-1,0)-数学
曲线y=x3+3x2+2在点(1,6)处的切线方程为()A.9x+y-3=0B.9x-y-3=0C.9x+y-15=0D.9x-y-15=0-数学
设函数f(x)=x3+ax2+bx+c在x=1处取得极值-2,试用c表示a和b,并求f(x)的单调区间.-数学
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为-高三数学
已知曲线C1:y=x2e+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.(I)求证:直线m与曲线C1、C2都相切,且切于同一点;(II)设直线x=t(t>0)与曲线C1、C2及
已知函数f(x)=x3-ax|x+a|,x∈[0,2],(1)当a=-1时,求函数f(x)的最大值;(2)当函数f(x)的最大值为0时,求实数a的取值范围.-高三数学
已知limn→∞(2n2n+1-an-b)=2,其中a,b∈R,则a-b=______.-数学
在x∈上,函数f(x)=x2+px+q与在同一点取得相同的最小值,那么f(x)在上的最大值是[]A.B.4C.8D.-高二数学
已知limx→∞(2x-1+ax-13x)=2,则a=()A.1B.2C.3D.6-数学
设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为[]A.1B.C.D.-高三数学
已知函数f(x)=exx-a,其中常数(a<0).(I)若a=-1,求函数f(x)的定义域及极值;(Ⅱ)若存在实数x∈(a,0],使得不等式f(x)≤12成立,求a的取值范围.-数学
已知函数f(x)=23x(x2-3ax-92)(a∈R),若函数f(x)的图象上点P(1,m)处的切线方程为3x-y+b=0,则m的值为()A.13B.12C.-13D.-12-数学
已知函数f(x)=(t-x),其中t为常数,且t>0。(1)求函数ft(x)在(0,+∞)上的最大值;(2)数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n
已知三次函数f(x)=ax3+bx2+cx。(1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;(2)在(1)的条件下,若对于区间[-3,2]上
已知函数f(x)=-x3+ax2-4(a∈R),f(x)是f′(x)的导函数。(1)当a=2时,对于任意的m∈[-1,1],求f(m)的范围;(2)若存在x0∈(0,+∞),使f(x0)>0,求a的取
曲线y=x3上一点B处的切线l交x轴于点A,△OAB(O是原点)是以A为顶点的等腰三角形,则切线l的倾斜角为()A.30°B.45°C.60°D.120°-数学
已知定义在正实数集上的函数f(x)=12x2+2ex,g(x)=3e2lnx+b(其中e为常数,e=2.71828…),若这两个函数的图象有公共点,且在该点处的切线相同.(Ⅰ)求实数b的值;(Ⅱ)当x
已知函数f(x)=alnxx+1+bx,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当x>0,且x≠1时,f(x)>lnxx-1+kx,求k的取值
已知(2x-22)9展开式的第7项为214,则limn→∞(x+x2+x3+…+xn)=______.-数学
函数f(x)=12x-x3在区间[-3,3]上的最小值是()。-高三数学
已知函数f(x)=38x2+lnx+2,g(x)=x.(Ⅰ)求函数F(x)=f(x)-2•g(x)的极值点;(Ⅱ)若函数F(x)=f(x)-2•g(x)在[et,+∞)(t∈Z)上有零点,求t的最大值
函数的最大值为[]A.e-1B.eC.e2D.-高二数学
已知等差数列{an}公差不为0,其前n项和为Sn,等比数列{bn}前n项和为Bn,公比为q,且|q|>1,则limn→+∞(Snnan+Bnbn)=______.-数学
已知对任意的实数m,直线x+y+m=0都不与曲线f(x)=x3-3ax(a∈R)相切.(I)求实数a的取值范围;(II)当x∈[-1,1]时,函数y=f(x)的图象上是否存在一点P,使得点P到x轴的距
已知函数f(x)=x+alnx,其中a为常数,且a≤-l,(Ⅰ)当a=-l时,求f(x)在[e,e2](e=2.71828…)上的值域;(Ⅱ)若f(x)≤e-l对任意x∈[e,e2]恒成立,求实数a的
已知函数f(x)=2lnx-x2(x>0)。(1)求函数f(x)的单调区间与最值;(2)若方程2xlnx+mx-x3=0在区间[,e]内有两个不相等的实根,求实数m的取值范围;(其中e为自然对数的底数
已知函数f(x)=x3-(2a+1)x2+3a(a+2)x+1,a∈R。(1)当a=0时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)当a=-1时,求函数y=f(x)在[0,4]上的最大
设函数f(x)=2x+-1(x<0),则f(x)[]A.有最大值B.有最小值C.是增函数D.是减函数-高三数学
某品牌电视生产厂家有A、B两种型号的电视机参加了家电下乡活动,若厂家对A、B两种型号的电视机的投放金额分别为p、q万元,农民购买A、B两种电视机获得的补贴分别为万元,已知-高三数学
已知a∈R,函数f(x)=x2(x-a)。(Ⅰ)当a=3时,求f(x)的零点;(Ⅱ)求函数y=f(x)在区间[1,2]上的最小值。-高三数学
定义在D={x∈R|x≠0}上的函数f(x)满足两个条件:①对于任意x、y∈D,都有f(x)f(y)-f(xy)=x2+y2xy;②曲线y=f(x)存在与直线x+y+1=0平行的切线.(Ⅰ)求过点(-
设函数f(x)=x2-alnx与g(x)=1ax-x的图象分别交直线x=1于点A,B,且曲线y=f(x)在点A处的切线与曲线y=g(x)在点B处的切线平行.(1)求函数f(x),g(x)的表达式;(2
已知a∈R,函数f(x)=xln(-x)+(a-1)x,(注:[ln(-x)]′=)(Ⅰ)若f(x)在x=-e处取得极值,求函数f(x)的单调区间;(Ⅱ)求函数f(x)在区间[-e2,-e-1]上的最
函数f(x)=x3-3x+1在闭区间[-3,0]上最大值、最小值分别是[]A.1,-1B.1,-17C.3,-17D.9,-19-高二数学
某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a(3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x≤11)元时,一年的销售量为(12-x)2万件,(1)求-高二数学
已知函数f(x)=xlnx。(1)求f(x)的最小值;(2)讨论关于x的方程f(x)-m=0(m∈R)的解的个数。-高三数学
已知limx→∞(2x2x+1-ax-b)=2,其中a,b∈R,则a-b的值为()A.-6B.-2C.2D.6-数学
已知定义在正实数集上的函数f(x)=12x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在公共点处的切线相同.(1)若a=1,求b的值;(2)用a表
设函数f(x)=x2+bln(x+1),其中b≠0.(Ⅰ)当b>12时,判断函数f(x)在定义域上的单调性;(Ⅱ)求函数f(x)的极值点;(Ⅲ)证明对任意的正整数n,不等式ln(1n+1)>1n2-1
返回顶部
题目简介
昌九高速公路起于江西省南昌市蛟桥收费站,终于九江市荷花垄收费站,全长122km,假设某汽车从九江荷花垄进入高速公路后以不低于60km/h,且不高于120km/h的速度匀速行驶到南昌-高三数学
题目详情
A.80
B.90
C.100
D.110
答案