已知曲线C1:y=x2e+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.(I)求证:直线m与曲线C1、C2都相切,且切于同一点;(II)设直线x=t(t>0)与曲线C1、C2及

题目简介

已知曲线C1:y=x2e+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.(I)求证:直线m与曲线C1、C2都相切,且切于同一点;(II)设直线x=t(t>0)与曲线C1、C2及

题目详情

已知曲线C1:y=
x2
e
+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.
(I)求证:直线m与曲线C1、C2都相切,且切于同一点;
(II)设直线x=t(t>0)与曲线C1、C2及直线m分别交于M、N、P,记f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.
题型:解答题难度:中档来源:不详

答案

(I)对于曲线C1:y=
x2
e
+e
,设切点P(a,b),有class="stub"2a
e
=2
∴a=e,故切点为P(e,2e),
切线:y-2e=2(x-e),即y=2x.所以直线m与曲线C1相切于点P(e,2e)
同理可证直线m与曲线C2也相切于点P(e,2e).
(II)由题意易得M(t,
t2
e
+e
),N(t,2elnt),P(t,2t)
∴由两点间的距离公式可得|MP|=
t2
e
+e-2t
,|PN|=2t-2elnt,
∴f(t)=
t2
e
+2elnt-4t+e(e-3≤t≤e3)

f(t)=class="stub"2t
e
+class="stub"2e
t
-4
=
2(t-e)2
t
≥0
∴f(t)在[e-3,e3]上单调增,故ymax=f(e3)=e5-4e3+7e.

更多内容推荐