已知等差数列{an}公差不为0,其前n项和为Sn,等比数列{bn}前n项和为Bn,公比为q,且|q|>1,则limn→+∞(Snnan+Bnbn)=______.-数学

题目简介

已知等差数列{an}公差不为0,其前n项和为Sn,等比数列{bn}前n项和为Bn,公比为q,且|q|>1,则limn→+∞(Snnan+Bnbn)=______.-数学

题目详情

已知等差数列{an}公差不为0,其前n项和为Sn,等比数列{bn}前n项和为Bn,公比为q,且|q|>1,则
lim
n→+∞
(
Sn
nan
+
Bn
bn
)
=______.
题型:填空题难度:中档来源:不详

答案

等差数列的公差为d,所以前n项和为Sn=na1+
n(n-1)
2
d
,an=a1+(n-1)d;
等比数列{bn}前n项和为Bn,公比为q,且|q|>1,Bn=
b1(1-qn)
1-q
,bn=b1qn-1;
所以
lim
n→+∞
(
Sn
nan
+
Bn
bn
)
=
lim
n→+∞
(
na1+
n(n-1)
2
d
n [a1+(n-1)d]
+
b1(1-qn)
1-q
b1qn-1
)

=
lim
n→+∞
(
a1
n
+class="stub"d
2
-class="stub"d
2n
a1
n
+1-class="stub"d
n
+
1-qn
(1-q)qn-1
 )

=class="stub"1
2
+class="stub"q
q-1

故答案为:class="stub"1
2
+class="stub"q
q-1

更多内容推荐