设f(x)=(x-1)3+1,利用课本中推导等差数列的前n项和的公式的方法,可求得f(-4)+…+f(0)+…+f(5)+f(6)的值为:______-数学

题目简介

设f(x)=(x-1)3+1,利用课本中推导等差数列的前n项和的公式的方法,可求得f(-4)+…+f(0)+…+f(5)+f(6)的值为:______-数学

题目详情

设f(x)=(x-1)3+1,利用课本中推导等差数列的前n项和的公式的方法,可求得f(-4)+…+f(0)+…+f(5)+f(6)的值为:______
题型:填空题难度:中档来源:不详

答案

用倒序相加法:
令f(-4)+f(-3)+…+f(0)+…+f(5)+f(6)=S   ①
则也有f(6)+f(5)+…+f(0)+…+f(-3)+f(-4)=S   ②
由f(x)+f(2-x)=(x-1)3+1+(1-x)3+1=2
可得:f(-4)+f(6)=f(-3)+f(5)=…=2,
于是由①②两式相加得2S=11×2,
所以S=11;
故答案为11.

更多内容推荐