设数列{an}满足a1=0,且an+1=an+14+1+4an2.(Ⅰ)求a2的值;(Ⅱ)设14+an=bn,试判断数列{bn}是否为等差数列?并求数列{bn}的通项公式;(Ⅲ)设g(n)=1bn+1

题目简介

设数列{an}满足a1=0,且an+1=an+14+1+4an2.(Ⅰ)求a2的值;(Ⅱ)设14+an=bn,试判断数列{bn}是否为等差数列?并求数列{bn}的通项公式;(Ⅲ)设g(n)=1bn+1

题目详情

设数列{an}满足a1=0,且an+1=an+
1
4
+
1+4an
2
.  
(Ⅰ)求a2的值;
(Ⅱ)设
1
4
+an
=bn
,试判断数列{bn}是否为等差数列?并求数列{bn}的通项公式;
(Ⅲ)设g(n)=
1
bn+1
+
1
bn+2
+
1
bn+3
+…+
1
b2n
,且g(n)≥m(m∈R)对任意n>1,n∈N*都成立,求m的最大值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵a1=0,且an+1=an+class="stub"1
4
+
1+4an
2

∴a2=class="stub"1
4
+class="stub"1
2
=class="stub"3
4

(Ⅱ)∵
class="stub"1
4
+an
=bn

∴an=bn2-class="stub"1
4
,代入an+1=an+class="stub"1
4
+
1+4an
2
得到:
b2n+1
=(bn+class="stub"1
2
)2

∵bn>0,
∴bn+1-bn=class="stub"1
2
,所以数列{bn}是以b1=class="stub"1
2
为首项,公差为class="stub"1
2
的等差数列.bn=class="stub"1
2
+(n-1)•class="stub"1
2
=class="stub"1
2
n.即数列{bn}的通项公式为bn=class="stub"1
2
n.
(Ⅲ)要使g(n)≥m(m∈R)对任意n>1,n∈N*都成立,只须m≤[g(n)min].
∵g(n)=class="stub"1
bn+1
+class="stub"1
bn+2
+class="stub"1
bn+3
+…+class="stub"1
b2n
=2(class="stub"1
n+1
+class="stub"1
n+2
+class="stub"1
n+3
+…+class="stub"1
2n
)
,∴g(n+1)-g(n)=2(class="stub"1
2n+1
+class="stub"1
2n+2
-class="stub"1
n+1
)=class="stub"1
(2n+1)•(n+1)
>0,∴g(n)是增的,
[g(n)]min=g(2)=2•(class="stub"1
3
+class="stub"1
4
)=class="stub"7
6

∴m的最大值为class="stub"7
6

更多内容推荐