(1)①计算limn→∞an+1+bnan+bn+1(a2+b2≠0且a≠-b);②计算limx→-∞x2-33x3+1.(2)设函数f(x)=x21+x2-1-1(x>0)a(x=0)bx(1+x-

题目简介

(1)①计算limn→∞an+1+bnan+bn+1(a2+b2≠0且a≠-b);②计算limx→-∞x2-33x3+1.(2)设函数f(x)=x21+x2-1-1(x>0)a(x=0)bx(1+x-

题目详情

(1)①计算
lim
n→∞
an+1+bn
an+bn+1
(a2+b2≠0且a≠-b);
②计算
lim
x→-∞
x2-3
3x3+1

(2)设函数f(x)=
x2
1+x2
-1
-1(x>0)
a(x=0)
b
x
(
1+x
-1)(x<0)

①若f(x)在x=0处的极限存在,求a,b的值;
②若f(x)在x=0处连续,求a,b的值.
题型:解答题难度:中档来源:不详

答案

(1)①当a=b≠0时,
lim
n→∞
an+1+bn
an+bn+1
=1;
当|a|>|b|时,
lim
n→∞
an+1+bn
an+bn+1
=
lim
n→∞
 
a+(class="stub"b
a
)
n
1+b(class="stub"b
a
)
n
=a;
当|a|<|b|时,
lim
n→∞
an+1+bn
an+bn+1
=
lim
n→∞
a(class="stub"a
b
)
n
+1
(class="stub"a
b
)
n
+b
=class="stub"1
b

lim
n→∞
an+1+bn
an+bn+1
=
1,a=b≠0
a|a|>|b
class="stub"1
b
|a|<|b

lim
x→-∞
x2-3
3x3+1
=
lim
x→-∞
1-class="stub"3
x2
3-1+class="stub"1
x3
=-1


(2)①
lim
x→0-
f(x)=
lim
x→0-
class="stub"b
x
(
1+x
-1)

=
lim
x→0-
b(
1+x
-1)(
1+x
+1)
x(
1+x
+1)

=
lim
x→0-
class="stub"b
1+x
+1

=class="stub"b
2

lim
x→0+
(
x2
1+x2
-1
-1)
=
lim
x→0+
[
x2(
1+x2
+1)
(
1+x2
-1)(
1+x2
+1)
-1]

=
lim
0→0+
1+x2
=1.
∵f(x)在x=0处的极限存在,∴class="stub"b
2
=1
,∴b=2.
故a∈R,b=2.
②∵f(x)在x=0处连续,∴
class="stub"b
2
=1
a=1
,∴a=1,b=2.

更多内容推荐