对有n(n≥4)个元素的总体{1,2,…,n}进行抽样,先将总体分成两个子总体{1,2,…,m}和{m+1,m+2,…,n}(m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组

题目简介

对有n(n≥4)个元素的总体{1,2,…,n}进行抽样,先将总体分成两个子总体{1,2,…,m}和{m+1,m+2,…,n}(m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组

题目详情

对有n(n≥4)个元素的总体{1,2,…,n}进行抽样,先将总体分成两个子总体{1,2,…,m}和{m+1,m+2,…,n}(m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组成样本.用Pij表示元素i和j同时出现在样本中的概率,则P1n=______; 所有Pij(1≤i<j≤n)的和等于______.
题型:填空题难度:中档来源:不详

答案

从{1,2,…,m}中随机抽取2个元素所有的抽法有Cm2,
从{m+1,m+2,…,n}中随机抽取2个元素所有的抽法有Cn-m2,
所以从每个子总体中各随机抽取2个元素组成样本所有的抽法有有Cm2•Cn-m2
从{1,2,…,m}中随机抽取2个元素其中抽到1的抽法有m-1种方法,
从{m+1,m+2,…,n}中随机抽取2个元素其中抽到n的抽法有n-m-1种方法,
由古典概型的概率公式得
(m-1)(n-m-1)
C2m
C2n-m
=class="stub"4
m(n-m)

①当i,j∈{1,2,3,…m},Pij=
C2m
C2m
=1
②当i,j∈{m+1,m+2,m+3…n},Pij=
C2n-m
C2n-m
=1

③当i∈{1,2,3,…m},j∈{m+1,m+2…n},Pij=class="stub"4
m(n-m)
×m(n-m)=4

所有Pij(1≤i<j≤n)的和等于6
故答案为:4m(n-m);6

更多内容推荐