设函数f(x)=14x2+bx-34.已知不论α,β为何实数,恒有f(cosα)≤0,f(2-sinβ)≥0.对于正项数列{an},其前n项和为Sn=f(an)n∈N*.(1)求实数b;(2)求数列{

题目简介

设函数f(x)=14x2+bx-34.已知不论α,β为何实数,恒有f(cosα)≤0,f(2-sinβ)≥0.对于正项数列{an},其前n项和为Sn=f(an)n∈N*.(1)求实数b;(2)求数列{

题目详情

设函数f(x)=
1
4
x2+bx-
3
4
.已知不论α,β为何实数,恒有f(cosα)≤0,f(2-sinβ)≥0.对于正项数列{an},其前n项和为Sn=f(an)n∈N*
(1)求实数b;
(2)求数列{an}的通项公式;
(3)若Cn=
1
(1+an)2
(n∈N+)且数列{Cn}的前n项和为Tn,比较Tn
1
6
的大小,并说明理由.
题型:解答题难度:中档来源:不详

答案

(1)∵cosα∈[-1,1],sinβ∈[-1,1],2-sinβ∈[1,3]
不论α、β为何实数恒有  f(cosα)≤0,f(2-sinβ)≥0
即对x∈[-1,1]有f(x)≤0对x∈[1,3]有f(x)≥0
∴x=1时f(1)=0
(2)∵Sn=f(an)=class="stub"1
4
a2n
+class="stub"1
2
an-class="stub"3
4
Sn-1=class="stub"1
4
a2n-1
+class="stub"1
2
an-1-class="stub"3
4

n≥2时Sn-Sn-1=an=class="stub"1
4
(
a2n
-
a2n-1
)+class="stub"1
2
(an-an+1)

∴(an+an-1)(an-an-1-2)=0∵an>0∴an-an-1=2
∴{an}是首项为a,公差为2的等数列
a1=S1代入方程a1=class="stub"1
4
a21
+class="stub"1
2
a1-class="stub"3
4
a21
-2a1-3=0

∴a1=3∴an=3+2(n-1)=2n+1
(3)∵Cn=class="stub"1
(1+2n+1)2
=class="stub"1
(2n+2)2
<class="stub"1
(2n+2)2-1
=class="stub"1
2
(class="stub"1
2n+1
-class="stub"1
2n+3
)

Tn=C1+C2+…+Cn<class="stub"1
2
[class="stub"1
3
-class="stub"1
5
+class="stub"1
5
-class="stub"1
7
+…+class="stub"1
2n+1
-class="stub"1
2n+3
]
=class="stub"1
2
(class="stub"1
3
-class="stub"1
2n+3
)=class="stub"1
6
-class="stub"1
2(2n+3)
<class="stub"1
6

更多内容推荐