若a>0,a≠1,F(x)是偶函数,则G(x)=F(x)•loga(x+x2+1)的图象是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称-数学

题目简介

若a>0,a≠1,F(x)是偶函数,则G(x)=F(x)•loga(x+x2+1)的图象是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称-数学

题目详情

若a>0,a≠1,F(x)是偶函数,则G(x)=F(x)•loga(x+
x2+1
)
的图象是(  )
A.关于x轴对称B.关于y轴对称
C.关于原点对称D.关于直线y=x对称
题型:单选题难度:中档来源:不详

答案

令H(x)=loga(x+
x2+1
)
,则有H(-x)=loga (-x+
(-x)2+1
)=loga class="stub"1
x+
1+x2
=- H(x)

∵F(x)是偶函数,∴F(-x)=F(x)
∴G(-x)=F(-x)•H(-x)=-F(x)•H(x)=-G(x)
所以函数G(x)为奇函数,由奇函数的性质可得图象关于原点对称
故选C

更多内容推荐