已知A={x|4x-9•2x+1+32≤0},B={y|y=log12x2•log12x8,x∈A};若y1∈B,y2∈B.求|y1-y2|最大值.-数学

题目简介

已知A={x|4x-9•2x+1+32≤0},B={y|y=log12x2•log12x8,x∈A};若y1∈B,y2∈B.求|y1-y2|最大值.-数学

题目详情

已知A={x|4x-9•2x+1+32≤0},B={y| y=log
1
2
x
2
•log
1
2
x
8
,x∈A }
;若y1∈B,y2∈B.求|y1-y2|最大值.
题型:解答题难度:中档来源:不详

答案

由4x-9•2x+1+32≤0 可得 (2x)2-18•2x+32≤0,即 (2x-2)(2x-16)≤0,即2≤2x≤16,
∴1≤x≤4,即A=[1,4].
y=logclass="stub"1
2
class="stub"x
2
•logclass="stub"1
2
class="stub"x
8
,x∈A 

∴y=log2class="stub"2
x
log2class="stub"8
x
=(1-log2x)(3-log2x).
再由 1≤x≤4,可得  0≤log2x≤2,故当log2x=0时,ymax=3;  当log2x=2 时,ymin=-1,
∴B=[-1,3].
∴|y1-y2|最大值为 3-(-1)=4.

更多内容推荐