已知f(x)是R上的偶函数,若f(x)的图象向右平移一个单位后,则得到一个奇函数的图象,则f(1)+f(3)+…+f(9)的值为()A.1B.0C.-1D.-92-数学

题目简介

已知f(x)是R上的偶函数,若f(x)的图象向右平移一个单位后,则得到一个奇函数的图象,则f(1)+f(3)+…+f(9)的值为()A.1B.0C.-1D.-92-数学

题目详情

已知f(x)是R上的偶函数,若f(x)的图象向右平移一个单位后,则得到一个奇函数的图象,则f(1)+f(3)+…+f(9)的值为(  )
A.1B.0C.-1D.-
9
2
题型:单选题难度:中档来源:大连二模

答案

由题意知,f(x)是R上的偶函数,f(x-1)是一个奇函数,
∴f(x-1)=-f(-x-1)=-f(x+1),
∴f(x-1)+f(x+1)=0,
∴f(9)+f(7)=0,f(5)+f(3)=0,
由f(x-1)是奇函数 得,f(0-1)=0,即f(-1)=0,
又f(x)是R上的偶函数,
∴f(1)=f(-1)=0,
∴f(1)+f(3)+…+f(9)=f(1)=0,故选  B.

更多内容推荐