已知函数f(x)=x2+2x+alnx(x>0),(Ⅰ)若f(x)在[1,+∞)上单调递增,求a的取值范围;(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式12

题目简介

已知函数f(x)=x2+2x+alnx(x>0),(Ⅰ)若f(x)在[1,+∞)上单调递增,求a的取值范围;(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式12

题目详情

已知函数f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.
题型:解答题难度:中档来源:不详

答案

更多内容推荐