设函数f(x)=x3+a﹣a2x+m(a≥0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)在x∈[﹣1,1]内没有极值点,求a的取值范围;(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在

题目简介

设函数f(x)=x3+a﹣a2x+m(a≥0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)在x∈[﹣1,1]内没有极值点,求a的取值范围;(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在

题目详情

设函数f(x)=x3+a﹣a2x+m(a≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[﹣1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在x∈[﹣2,2]上恒成立,求m的取值范围.
题型:解答题难度:中档来源:新疆自治区月考题

答案

解:(Ⅰ)∵f'(x)=3+2ax﹣a2=
当a=0时f'(x)≥0
∴函数f(x)的单调递增区间为(﹣∞,+∞)
当a>0时由f'(x)>0得x<﹣a或
由f'(x)<0得
∴函数f(x)的单调递增区间为(﹣∞,﹣a),,单调递减区间为
(Ⅱ)当a=0时由(1)知函数f(x)在[﹣1,1]上单调递增,
则f(x)在[﹣1,1]上没有极值点;
当a>0时∵
由(1)知f(x)在上单调递增,在上单调递减;
则要f(x)在[﹣1,1]上没有极值点,
则只需f'(x)=0在(﹣1,1)上没有实根.
,解得a≥3
综上述可知:a的取值范围为[3,+∞)∪{0}
(Ⅲ)∵a∈[3,6),
≤﹣3
又x∈[﹣2,2]
由(1)的单调性质知f(x)max=max{f(﹣2),f(2)}
而f(2)﹣f(﹣2)=16﹣4a2<0
∴f(x)max=f(﹣2)=﹣8+4a+2a2+m
∵f(x)≤1在[﹣2,2]上恒成立
∴f(x)max≤1即﹣8+4a+2a2+m≤1即m≤9﹣4a﹣2a2在a∈[3,6]上恒成立,
∵9﹣4a﹣2a2的最小值为﹣87
∴m≤﹣87

更多内容推荐