已知函数f(x)=lnx+a-xx,其中a为常数,且a>0.(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=12x+1垂直,求a的值;(2)若函数f(x)在区间[1,2]上的最小值为12

题目简介

已知函数f(x)=lnx+a-xx,其中a为常数,且a>0.(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=12x+1垂直,求a的值;(2)若函数f(x)在区间[1,2]上的最小值为12

题目详情

已知函数f(x)=lnx+
a-x
x
,其中a为常数,且a>0.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=
1
2
x+1
垂直,求a的值;
(2)若函数f(x)在区间[1,2]上的最小值为
1
2
,求a的值.
题型:解答题难度:中档来源:不详

答案

f′(x)=class="stub"1
x
+
-x-(a-x)
x2
=class="stub"1
x
-class="stub"a
x2
=class="stub"x-a
x2
(x>0)(4分)
(1)因为曲线y=f(x)在点(1,f(1))处的切线与直线y=class="stub"1
2
x+1
垂直,
所以f'(1)=-2,即1-a=-2,解得a=3.(6分)
(2)当0<a≤1时,f'(x)>0在(1,2)上恒成立,
这时f(x)在[1,2]上为增函数∴f(x)min=f(1)=a-1.
∴a-1=class="stub"1
2
,a=class="stub"3
2
,不合(8分)
当1<a<2时,由f'(x)=0得,x=a∈(1,2)
∵对于x∈(1,a)有f'(x)<0,f(x)在[1,a]上为减函数,
对于x∈(a,2)有f'(x)>0,f(x)在[a,2]上为增函数,
∴f(x)min=f(a)=lna.
∴lna=class="stub"1
2
,a=
e
,(11分)
当a≥2时,f'(x)<0在(1,2)上恒成立,
这时f(x)在[1,2]上为减函数,∴f(x)min=f(2)=ln2+class="stub"a
2
-1,
∴ln2+class="stub"a
2
-1=class="stub"1
2
,a=3-2ln2,不合.
综上,a的值为
e
.(13分)

更多内容推荐