已知函数f(x)=ax3+bx2+cx(a>0)在x=x1和x=x2处取得极值.(Ⅰ)若c=﹣a2,且|x1﹣x2|=2,求b的最大值;(Ⅱ)设g(x)=f'(x)+x,若0<x1<x2<,

题目简介

已知函数f(x)=ax3+bx2+cx(a>0)在x=x1和x=x2处取得极值.(Ⅰ)若c=﹣a2,且|x1﹣x2|=2,求b的最大值;(Ⅱ)设g(x)=f'(x)+x,若0<x1<x2<,

题目详情

已知函数f(x)=ax3+bx2+cx(a>0)在x=x1和x=x2处取得极值.
(Ⅰ)若c=﹣a2,且|x1﹣x2|=2,求b的最大值;
(Ⅱ)设g(x)=f '(x)+x,若0<x1<x2,且x∈(0,x1),证明:x<g(x)<x1
题型:解答题难度:中档来源:北京期末题

答案

解:(Ⅰ)∵c=﹣a2,
∴f ' (x)=3ax2+2bx﹣a2,
∵x1、x2是方程3ax2+2bx﹣a2=0的两根,a>0,
∴x1+x2=﹣,x1x2=﹣
∵|x1﹣x2|=2,
﹣4x1x2=4,即﹣4(﹣)=4,
整理得b2=3a2(3﹣a),
∵b2≥0,∴0<a≤3;
设h(a)=﹣3a3+9a2,
则h'(a)=﹣9a2+18a;
由h'(a)>0,得0<a<2;由h'(a)<0,得a>2.
∴h(a)=﹣3a3+9a2在区间(0,2)上是增函数,在区间(2,3)上是减函数,
∴当a=2时,h(a)有极大值12,
∴h(a)在(0,3]上的最大值是12,
从而b的最大值是2
(Ⅱ)由g(x)=f '(x)+x,得f '(x)=g(x)﹣x,
∵x1、x2是方程f '(x)=0的两根,
∴f '(x)=g(x)﹣x=3a(x﹣x1)(x﹣x2),当x∈(0,x1)时,由于x1<x2,
故(x﹣x1)(x﹣x2)>0,又a>0,
故g(x)﹣x=3a(x﹣x1)(x﹣x2)>0,即g(x)>x;
又x1﹣g(x)=x1﹣[x+f '(x)]=x1﹣x﹣3a(x﹣x1)(x﹣x2)=(x1﹣x)[1+3a(x﹣x2)],

∴x1﹣x>0,[1+3a(x﹣x2)]=1+3ax﹣3ax2>1﹣3ax2>0,
∴g(x)<x1;
综上所述:x<g(x)<x1.

更多内容推荐