优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知函数f(x)=ax3+bx2+cx(a>0)在x=x1和x=x2处取得极值.(Ⅰ)若c=﹣a2,且|x1﹣x2|=2,求b的最大值;(Ⅱ)设g(x)=f'(x)+x,若0<x1<x2<,
已知函数f(x)=ax3+bx2+cx(a>0)在x=x1和x=x2处取得极值.(Ⅰ)若c=﹣a2,且|x1﹣x2|=2,求b的最大值;(Ⅱ)设g(x)=f'(x)+x,若0<x1<x2<,
题目简介
已知函数f(x)=ax3+bx2+cx(a>0)在x=x1和x=x2处取得极值.(Ⅰ)若c=﹣a2,且|x1﹣x2|=2,求b的最大值;(Ⅱ)设g(x)=f'(x)+x,若0<x1<x2<,
题目详情
已知函数f(x)=ax
3
+bx
2
+cx(a>0)在x=x
1
和x=x
2
处取得极值.
(Ⅰ)若c=﹣a
2
,且|x
1
﹣x
2
|=2,求b的最大值;
(Ⅱ)设g(x)=f '(x)+x,若0<x
1
<x
2
<
,且x∈(0,x
1
),证明:x<g(x)<x
1
.
题型:解答题
难度:中档
来源:北京期末题
答案
解:(Ⅰ)∵c=﹣a2,
∴f ' (x)=3ax2+2bx﹣a2,
∵x1、x2是方程3ax2+2bx﹣a2=0的两根,a>0,
∴x1+x2=﹣
,x1x2=﹣
;
∵|x1﹣x2|=2,
∴
﹣4x1x2=4,即
﹣4(﹣
)=4,
整理得b2=3a2(3﹣a),
∵b2≥0,∴0<a≤3;
设h(a)=﹣3a3+9a2,
则h'(a)=﹣9a2+18a;
由h'(a)>0,得0<a<2;由h'(a)<0,得a>2.
∴h(a)=﹣3a3+9a2在区间(0,2)上是增函数,在区间(2,3)上是减函数,
∴当a=2时,h(a)有极大值12,
∴h(a)在(0,3]上的最大值是12,
从而b的最大值是2
(Ⅱ)由g(x)=f '(x)+x,得f '(x)=g(x)﹣x,
∵x1、x2是方程f '(x)=0的两根,
∴f '(x)=g(x)﹣x=3a(x﹣x1)(x﹣x2),当x∈(0,x1)时,由于x1<x2,
故(x﹣x1)(x﹣x2)>0,又a>0,
故g(x)﹣x=3a(x﹣x1)(x﹣x2)>0,即g(x)>x;
又x1﹣g(x)=x1﹣[x+f '(x)]=x1﹣x﹣3a(x﹣x1)(x﹣x2)=(x1﹣x)[1+3a(x﹣x2)],
,
∴x1﹣x>0,[1+3a(x﹣x2)]=1+3ax﹣3ax2>1﹣3ax2>0,
∴g(x)<x1;
综上所述:x<g(x)<x1.
上一篇 :
已知函数f(x)=x3﹣ax2﹣x+a,其中a为实
下一篇 :
函数y=1x2+1在x=l处的切线方程
搜索答案
更多内容推荐
过点(-1,0)与函数f(x)=ex(e是自然对数的底数)图象相切的直线方程是______.-数学
知曲线y=x2-3x的一条切线的斜率为1,则切点的横坐标为()A.-2B.-1C.2D.3-数学
若多项式(1+x)m=a0+a1x+a2x2+…+amxm满足:a1+2a2+3a3+…+mam=80,则limn→∞(1a4+1a24+1a34+…+1an4)的值是()A.13B.14C.15D.
已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.(1)用a表示b,并求b的最大值;(2)求F
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗-高三数学
已知函数f(x)=lnx,g(x)=x2﹣2x.(1)设h(x)=f(x+1)﹣g'(x)(其中g'(x)是g(x)的导函数),求h(x)的最大值;(2)证明:当0<b<a时,求证
数列{an}满足:an=12n,n为奇数13n,n为偶数.,它的前n项和记为Sn,则limn→∞Sn=______.-数学
曲线C:y=1x的切线l被坐标轴所截得线段的长的最小值为______.-数学
已知曲线y=x34的一条切线的斜率为14,则切点的横坐标为______.-数学
据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k(k>0).现已知相距18km的A,B两家化工厂(污染源)的污染强度分别为a,b,-高三数学
函数y=f(x)的图象在点P(5,f(x))处的切线方程是y=-x+8,则f(5)+f′(5)=()A.12B.1C.2D.0-数学
已知f(x)=Inx,g(x)=+mx+(m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.(1)求直线l的方程及实数m的值;(2)若h(x)=f(x+1
已知函数的极大值点为x=﹣1.(1)用实数a来表示实数b,并求a的取值范围;(2)当x∈[﹣1,2]时,f(x)的最小值为,求a的值;(3)设A(﹣1,f(﹣1)),B(2,f(2)),A,B两点的连
若limn→∞an2+bnn+1=2,则a+b=______.-数学
设函数.(1)若a=0,求f(x)在(0,m](m>0)上的最大值g(m).(2)若f(x)在区间[1,2]上为减函数,求a的取值范围.(3)若直线y=x为函数f(x)的图象的一条切线,求a的值.-高
已知曲线C:y=2x3-3x2-2x+1,点P(12,0),求过P点的切线l与曲线C所围成的图形的面积.-数学
limn→∞2n2+11+3+5+…+(2n-1)=______.-数学
已知函数f(x)在R上满足y=f(x)=2f(2-x)+ex-1+x2,则曲线y=f(x)在点(1,f(1))处的切线方程是()A.2x-y-1=0B.x-y-3=0C.3x-y-2=0D.2x+y-
若函数f(x)=ax•cosx在点O(0,0)处的切线与直线x-2y+3=0平行,则a=()A.-12B.12C.-2D.2-数学
曲线y=sinx在点(π3,32)处的切线方程为______.-数学
已知函数f(x)=[3ln(x+2)﹣ln(x﹣2)](I)求x为何值时,f(x)在[3,7]上取得最大值;(Ⅱ)设F(x)=aln(x﹣1)﹣f(x),若F(x)是单调递增函数,求a的取值范围.-高
已知关于x的函数f(x)=13x3+bx2+cx+bc,其导函数为f+(x).令g(x)=|f+(x)|,记函数g(x)在区间[-1、1]上的最大值为M.(Ⅰ)如果函数f(x)在x=1处有极值-43,
已知函数f(x)=x3﹣ax2+(a2﹣1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y﹣3=0.(1)求a,b的值;(2)求函数f(x)的单调区间,并求出f(x)在区间[﹣2
过抛物线x2=2y上两点A(-1,12)、B(2,2)分别作抛物线的切线,两条切线交于点M.(1)求证:∠BAM=∠BMA;(2)记过点A、B且中心在坐标原点、对称轴为坐标轴的双曲线为C,F1、F2为
已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(1)当a=3时,求函数f(x)在上的最大值;(2)当函数f(x)在单调时,求a的取值范围.-高三数学
已知f(x)=lnx+x2﹣bx.(1)若函数f(x)在其定义域内是增函数,求b的取值范围;(2)当b=﹣1时,设g(x)=f(x)﹣2x2,求证函数g(x)只有一个零点.-高三数学
曲线y=2x2-2,在x=-12处的切线斜率是()A.-4B.-2C.12D.-12-数学
讨论函数f(x)=x2+1(x≤0)x+1(x>0)在x=0处的可导性.-数学
曲线y=x2+2x-1在点(1,2)处的切线方程是______.-数学
已知函数f(x)=asinx-x+b(a、b均为正的常数).(1)求证函数f(x)在(0,a+b]内至少有一个零点;(2)设函数f(x)在处有极值①对于一切,不等式f(x)>sinx+cosx总成立,
某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格.销售量可以增加,且每星期多卖出的商品件数与商品单价的降低销x(单位:元,0≤x≤30)的平方成正比.已知商品单价降-高三数学
已知函数f(x)=xlnx,(Ⅰ)求函数f(x)在[1,3]上的最小值;(Ⅱ)若存在x∈(e为自然对数的底数,且e=2.71828…)使不等式2f(x)≥-x2+ax-3成立,求实数a的取值范围。-高
工厂生产某种产品,次品率p与日产量x(万件)间的关系为(c为常数,且0<c<6),已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.(1)将日盈利额y(万元)表示为日产量x(万件-高三数学
已知函数f(x)=ln(ex+k)(k为常数)是实数集R上的奇函数(1)求k的值(2)若函数g(x)=λf(x)+sinx是区间[﹣1,1]上的减函数,且g(x)≤t2+λt+1在x∈[﹣1,1]上恒
过点A(2,1)作曲线f(x)=2x-3的切线l.(Ⅰ)求切线l的方程;(Ⅱ)求切线l,x轴及曲线所围成的封闭图形的面积S.-数学
定义域R的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2﹣2x,若恒成立,则实数t的取值范围是[]A.(﹣∞,﹣1]∪(0,3]B.C.[﹣1,0)∪[3,+∞)D.-高
已知函数f(x)=cos(x+θ),θ∈R,若limx→0f(π+x)-f(π)x=1,则函数f(x)的解析式为()A.f(x)=-sinxB.f(x)=-cosxC.f(x)=sinxD.f(x)=
设函数f(x)=2x3﹣12x+c是定义在R上的奇函数.(Ⅰ)求c的值及函数f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小
已知函数,a∈R.(Ⅰ)当a=1时,求函数f(x)的最小值;(Ⅱ)当a≠0时,讨论函数f(x)的单调性;(Ⅲ)是否存在实数a,对任意的x1,x2∈(0,+∞),且x1≠x2,有,恒成立,若存在求出a的
有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形-高三数学
设a为实数,函数f(x)=ex﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,ex>x2﹣2ax+1.-高三数学
已知a>0,函数f(x)=|x-ax+2a|.(I)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(II)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点
函数y=x2的曲线上点A处的切线与直线3x-y+1=0的夹角为45°,则点A的坐标为______.-数学
曲线y=2x2+1在P(-1,3)处的切线方程是______.-数学
已知函数f(x)=(x2﹣3x+3)ex定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ
已知函数f(x)=﹣x3+ax2﹣4.(1)若f(x)在处取得极值,求实数a的值;(2)在(Ⅰ)的条件下,若关于x的方程f(x)=m在[﹣1,1]上恰有两个不同的实数根,求实数m的取值范围;(3)若存
已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.(1)求函数f(x)在[t,t+2](t>0)上的最小值;(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(3)证明:
已知各项均为正的等比数列{bn}的首项b1=1,公比为q,前n项和为Sn,若limn→∞Sn+1Sn=1,则公比q的取值范围是______.-数学
若函数f(x)=x3+ax在点O(0,0)处的切线与直线x-2y+3=0平行,则a等于()A.-12B.12C.-2D.2-数学
已知抛物线x2=8y的焦点为F,A、B是抛物线上的两动点,且AF=λFB(λ>0),过A、B两点分别作抛物线的切线,设其交点为M(1)证明线段FM被x轴平分;(2)计算FM•AB的值;(3)求证|FM
返回顶部
题目简介
已知函数f(x)=ax3+bx2+cx(a>0)在x=x1和x=x2处取得极值.(Ⅰ)若c=﹣a2,且|x1﹣x2|=2,求b的最大值;(Ⅱ)设g(x)=f'(x)+x,若0<x1<x2<,
题目详情
(Ⅰ)若c=﹣a2,且|x1﹣x2|=2,求b的最大值;
(Ⅱ)设g(x)=f '(x)+x,若0<x1<x2<
答案
∴f ' (x)=3ax2+2bx﹣a2,
∵x1、x2是方程3ax2+2bx﹣a2=0的两根,a>0,
∴x1+x2=﹣
∵|x1﹣x2|=2,
∴
整理得b2=3a2(3﹣a),
∵b2≥0,∴0<a≤3;
设h(a)=﹣3a3+9a2,
则h'(a)=﹣9a2+18a;
由h'(a)>0,得0<a<2;由h'(a)<0,得a>2.
∴h(a)=﹣3a3+9a2在区间(0,2)上是增函数,在区间(2,3)上是减函数,
∴当a=2时,h(a)有极大值12,
∴h(a)在(0,3]上的最大值是12,
从而b的最大值是2
(Ⅱ)由g(x)=f '(x)+x,得f '(x)=g(x)﹣x,
∵x1、x2是方程f '(x)=0的两根,
∴f '(x)=g(x)﹣x=3a(x﹣x1)(x﹣x2),当x∈(0,x1)时,由于x1<x2,
故(x﹣x1)(x﹣x2)>0,又a>0,
故g(x)﹣x=3a(x﹣x1)(x﹣x2)>0,即g(x)>x;
又x1﹣g(x)=x1﹣[x+f '(x)]=x1﹣x﹣3a(x﹣x1)(x﹣x2)=(x1﹣x)[1+3a(x﹣x2)],
∴x1﹣x>0,[1+3a(x﹣x2)]=1+3ax﹣3ax2>1﹣3ax2>0,
∴g(x)<x1;
综上所述:x<g(x)<x1.