已知函数f(x)=(x2﹣3x+3)ex定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ

题目简介

已知函数f(x)=(x2﹣3x+3)ex定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ

题目详情

已知函数f(x)=(x2﹣3x+3)ex定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.
(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;
(Ⅱ)求证:n>m;
(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足,并确定这样的x0的个数.
题型:解答题难度:偏难来源:甘肃省月考题

答案

(Ⅰ)解:因为f′(x)=(2x﹣3)ex+(x2﹣3x+3)ex,
由f′(x)>0   x>1或x<0,
由f′(x)<0   0<x<1,
∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,
∴函数f(x)在[﹣2,t]上为单调函数,
∴﹣2<t≤0,
(Ⅱ)证:因为函数f(x)在(﹣∞,0)∪(1,+∞)上单调递增,在(0,1)上单调递减,
所以f(x)在x=1处取得极小值e,
又f(﹣2)=13e﹣2<e,
所以f(x)在[2,+∞)上的最小值为f(﹣2),
从而当t>﹣2时,f(﹣2)<f(t),即m<n,
(Ⅲ)证:因为

即为x02﹣x0=
令g(x)=x2﹣x﹣
从而问题转化为证明方程g(x)==0在(﹣2,t)上有解并讨论解的个数,
因为g(﹣2)=6﹣=﹣
g(t)=t(t﹣1)﹣=
所以当t>4或﹣2<t<1时,g(﹣2)g(t)<0,
所以g(x)=0在(﹣2,t)上有解,且只有一解,
当1<t<4时,g(﹣2)>0且g(t)>0,但由于g(0)=﹣<0,
所以g(x)=0在(﹣2,t)上有解,且有两解,当t=1时,g(x)=x2﹣x=0,解得x=0或1,
所以g(x)=0在(﹣2,t)上有且只有一解,当t=4时,g(x)=x2﹣x﹣6=0,
所以g(x)=0在(﹣2,t)上也有且只有一解,
综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足
且t≥4或﹣2<t≤1时,有唯一的x0适合题意,
当1<t<4时,有两个x0适合题意.

更多内容推荐