已知函数.(Ⅰ)当时,讨论函数f(x)的单调性;(Ⅱ)设g(x)=x2﹣2bx+4,当时,若对任意x1∈(0,2),当x2∈[1,2]时,f(x1)≥g(x2)恒成立,求实数b的取值范围.-高三数学

题目简介

已知函数.(Ⅰ)当时,讨论函数f(x)的单调性;(Ⅱ)设g(x)=x2﹣2bx+4,当时,若对任意x1∈(0,2),当x2∈[1,2]时,f(x1)≥g(x2)恒成立,求实数b的取值范围.-高三数学

题目详情

已知函数
(Ⅰ)当时,讨论函数f(x)的单调性;
(Ⅱ)设g(x)=x2﹣2bx+4,当时,若对任意x1∈(0,2),当x2∈[1,2]时,
f(x1)≥g(x2)恒成立,求实数b的取值范围.
题型:解答题难度:中档来源:北京模拟题

答案

解:(Ⅰ)求导函数可得:=
令f′(x)=0,得
时,f'(x)≤0,函数f(x)在(0,+∞)上单调递减        
时,
在(0,1)和上,有f'(x)<0,函数f(x)单调递减,
上,f'(x)>0,函数f(x)单调递增    
(Ⅱ)当时,
由(Ⅰ)知,函数f(x)在(0,1)上是单调递减,在(1,2)上单调递增,
所以函数f(x)在(0,2)的最小值为
若对任意x1∈(0,2),当x2∈[1,2]时,f(x1)≥g(x2)恒成立,
只需当x∈[1,2]时,即可,
所以
代入解得      
所以实数b的取值范围是.                      

更多内容推荐