若函数y=f(x)(x∈R)满足f(x-2)=f(x),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=lgx(x>0)-1x(x<0),则函数h(x)=f(x)-g(x)在区间[-5,6]内

题目简介

若函数y=f(x)(x∈R)满足f(x-2)=f(x),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=lgx(x>0)-1x(x<0),则函数h(x)=f(x)-g(x)在区间[-5,6]内

题目详情

若函数y=f(x)(x∈R)满足f(x-2)=f(x),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=
lgx(x>0)
-
1
x
(x<0)
,则函数h(x)=f(x)-g(x)在区间[-5,6]内的零点的个数为(  )
A.13B.8C.9D.10
题型:单选题难度:偏易来源:资阳一模

答案

解:因为f(x-2)=f(x),所以函数y=f(x)(x∈R)是周期为2函数.
因为x∈[-1,1]时,f(x)=1-x2,所以作出它的图象,
利用函数y=f(x)(x∈R)是周期为2函数,
可作出y=f(x)在区间[-5,6]上的图象,如图所示:

故函数h (x )=f (x )-g (x )在区间[-5 ,6] 内的零点的个数为9 ,
故选C .

更多内容推荐