已知函数f(x)=sin(ωx+π3)(x∈R),且f(π6)=1.(1)求ω的最小正值及此时函数y=f(x)的表达式;(2)将(1)中所得函数y=f(x)的图象结果怎样的变换可得y=12sin12x

题目简介

已知函数f(x)=sin(ωx+π3)(x∈R),且f(π6)=1.(1)求ω的最小正值及此时函数y=f(x)的表达式;(2)将(1)中所得函数y=f(x)的图象结果怎样的变换可得y=12sin12x

题目详情

已知函数f(x)=sin(ωx+
π
3
)(x∈R),且f(
π
6
)=1

(1)求ω的最小正值及此时函数y=f(x)的表达式;
(2)将(1)中所得函数y=f(x)的图象结果怎样的变换可得y=
1
2
sin
1
2
x
的图象;
(3)在(1)的前提下,设α∈[
π
6
3
β∈(-
6
,-
π
3
)
f(α)=
3
5
,f(β)=-
4
5

①求tanα的值;
②求cos2(α-β)-1的值.
题型:解答题难度:中档来源:不详

答案

(1)因为f(class="stub"π
6
)=1
,所以sin(ω•class="stub"π
6
+class="stub"π
3
)=1

于是ω•class="stub"π
6
+class="stub"π
3
=class="stub"π
2
+2kπ(k∈Z)
,即ω=1+12k(k∈Z),
故当k=0时,ω取得最小正值1.
此时f(x)=sin(x+class="stub"π
3
)

(2)先将y=sin(x+class="stub"π
3
)
的图象向右平移class="stub"π
3
个单位得y=sinx的图象;
再将所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变)得y=sinclass="stub"1
2
x的图象;
最后将所得图象上各点的纵坐标缩小到原来的class="stub"1
2
倍(横坐标不变)得y=class="stub"1
2
sinclass="stub"1
2
x的图象.
(3)因为f(α)=class="stub"3
5
,f(β)=-class="stub"4
5

所以sin(α+class="stub"π
3
)=class="stub"3
5
,sin(β+class="stub"π
3
)=-class="stub"4
5

因为α∈[class="stub"π
6
,class="stub"2π
3
],β∈(-class="stub"5π
6
,-class="stub"π
3
)

所以α+class="stub"π
3
∈[class="stub"π
2
,π],β+class="stub"π
3
∈(-class="stub"π
2
,0)

于是cos(α+class="stub"π
3
)=-class="stub"4
5
,cos(β+class="stub"π
3
)=class="stub"3
5

①因为tan(α+class="stub"π
3
)=
sin(α+class="stub"π
3
)
cos(α+class="stub"π
3
)
=-class="stub"3
4

所以tanα=tan[(α+class="stub"π
3
)-class="stub"π
3
]=
tan(α+class="stub"π
3
)-tanclass="stub"π
3
1+tan(α+class="stub"π
3
)•tanclass="stub"π
3
=
-class="stub"3
4
-
3
1+(-class="stub"3
4
)•
3
=
4
3
+3
3
3
-4
=
48+25
3
11

②因为sin(α-β)=sin[(α+class="stub"π
3
)-(β+class="stub"π
3
)]
=sin(α+class="stub"π
3
)cos(β+class="stub"π
3
)-cos(α+class="stub"π
3
)sin(β+class="stub"π
3
)
=class="stub"3
5
•class="stub"3
5
-(-class="stub"4
5
)•(-class="stub"4
5
)=-class="stub"7
25

所以cos2(α-β)-1=-2sin2(α-β)=-2×(-class="stub"7
25
)2=-class="stub"98
625

更多内容推荐