优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 求证:(1)n≥0,试用分析法证明,n+2-n+1<n+1-n,(2)当a、b、c为正数时,(a+b+c)(1a+1b+1c)≥9.相等的非零实数.用反证法证明三个方程ax2+2bx+c=0,bx2+
求证:(1)n≥0,试用分析法证明,n+2-n+1<n+1-n,(2)当a、b、c为正数时,(a+b+c)(1a+1b+1c)≥9.相等的非零实数.用反证法证明三个方程ax2+2bx+c=0,bx2+
题目简介
求证:(1)n≥0,试用分析法证明,n+2-n+1<n+1-n,(2)当a、b、c为正数时,(a+b+c)(1a+1b+1c)≥9.相等的非零实数.用反证法证明三个方程ax2+2bx+c=0,bx2+
题目详情
求证:(1)n≥0,试用分析法证明,
n+2
-
n+1
<
n+1
-
n
,
(2)当a、b、c为正数时,(a+b+c)(
1
a
+
1
b
+
1
c
)≥9.
相等的非零实数.用反证法证明三个方程ax
2
+2bx+c=0,bx
2
+2cx+a=0,cx
2
+2ax+b=0至少有一个方程有两个相异实根.
题型:解答题
难度:中档
来源:不详
答案
证明:(1)要证
n+2
-
n+1
<
n+1
-
n
成立,即证
n+2
+
n
>2
n+1
,
即证
(
n+2
+
n
)
2
>(2
n+1
)
2
,即证
n+1>
n
2
+2n
,即证 (n+1)2>n2+2n,即n2+2n+1>n2+2n,
即证1>0,而1>0 显然成立,所以原命题成立.
(2)证明:假设三个方程中都没有两个相异实根,则△1=4b2-4ac≤0,△2=4c2-4ab≤0,
△3=4a2-4bc≤0. 相加有 a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0.①由题意a、b、c互不相等,∴①式不能成立.
∴假设不成立,即三个方程中至少有一个方程有两个相异实根.
上一篇 :
(1)求证:7-6<5-2;(2)已知函数f(x)=ex+x-
下一篇 :
|AB|=|xA-xB|表示数轴上A,B两点
搜索答案
更多内容推荐
已知a,b,c∈R+,求证:a2+b2+c23≥a+b+c3.-数学
选修4-5:不等式选讲(Ⅰ)已知x,y都是正实数,求证:x3+y3≥x2y+xy2;(Ⅱ)已知a,b,c都是正实数,求证:a3+b3+c3≥13(a2+b2+c2)(a+b+c).-数学
已知a,b都是正实数,且a+b=2,求证:a2a+1+b2b+1≥1.-数学
(Ⅰ)已知a>0,b>0,c>0,求证:a(b2+c2)+b(a2+c2)+c(a2+b2)≥6abc(Ⅱ)求证:7-6<5-2.-数学
已知a>0,1b-1a>1,求证:1+a>11-b.-数学
用分析法证明:3+7<25.-数学
已知a,b∈(0,+∞),求证:(a+b)(1a+1b)≥4.-数学
已知:a,b,c,d∈R,求证:(ac+bd)2≤(a2+b2)(c2+d2).-数学
设a≥b>0,求证:3a3+2b3≥3a2b+2ab2.-数学
已知正数a,b,c满足a+b+c=1证明a3+b3+c3≥a2+b2+c23.-数学
已知函数f(x)=mx2+m-22x(m>0).若f(x)≥lnx+m-1在[1,+∞)上恒成立,(1)求m取值范围;(2)证明:2ln2+3ln3+…+nlnn≤2n3+3n2-5n12(n∈N*)
(一)已知a,b,c∈R+,①求证:a2+b2+c2≥ab+bc+ac;②若a+b+c=1,利用①的结论求ab+bc+ac的最大值.(二)已知a,b,x,y∈R+,①求证:x2a+y2b≥(x+y)2
(1)已知a,b>0,求证:a(b2+c2)+b(c2+a2)≥4abc.(2)求证:3+7<25.-数学
设x,y,z∈R+,求证:2x2y+z+2y2z+x+2z2x+y≥x+y+z.-数学
设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤ak≤.-高三数学
(用分析法证明)求证:6+7>22+5.-数学
设{an}是等差数列,an>0,公差d≠0,求证:an+1+an+4<an+2+an+3.-数学
设函数f(x)=x33+a2x2+bx+c(a,b,c∈R),函数f(x)的导数记为f'(x).(1)若a=f'(2),b=f'(1),c=f'(0),求a、b
给出定义在(0,+∞)上的三个函数:f(x)=lnx,g(x)=x2﹣mf(x),,已知g(x)在x=1处取极值.(1)求m的值及函数h(x)的单调区间;(2)求证:当x∈(1,e2)时,恒有>x成立
设x≥1,y≥1,证明:x+y+1xy≤1x+1y+xy.-数学
如图△ABC,D是△ABC内一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线.求证:AB=CD.-数学
判断命题“若a>b>c且a+b+c=0,则b2-aca<3”是真命题还是假命题,并证明你的结论.-数学
已知x,y,z∈R+,求证:(1)(x+y+z)3≥27xyz;(2)(xy+yz+zx)(yx+zy+xz)≥9;(3)(x+y+z)(x2+y2+z2)≥9xyz.-数学
设函数,(a∈R).(1)若a=1,证明:当x>﹣1时,f(x)≥0;(2)若f(x)≤0在[0,+∞)上恒成立,求实数a的取值范围;(3)设n∈N且n>1求证:.-高三数学
某同学在一次研究性学习中发现,以下四个不等式都是正确的:①(12+42)(92+52)≥(1×9+4×5)2;②[(-6)2)+82]×(22+122)≥[(-6)×2+8×12]2③[(6.5)2+
若xn=1×2+2×3+…+n(n+1)(n为正整数),求证:不等式n(n+1)2<xn<(n+1)22对一切正整数n恒成立.-数学
用综合法或分析法证明:(1)如果a>0,b>0,则lga+b2≥lga+lgb2;(2)求证:6-5>22-7.-数学
已知函数的图象为曲线C,函数的图象为直线l.(Ⅰ)设m>0,当x∈(m,+∞)时,证明:(Ⅱ)设直线l与曲线C的交点的横坐标分别为x1,x2,且x1≠x2,求证:(x1+x2)g(x1+x2)>2.-
(附加题)是否存在常数c,使得不等式x2x+y+z+yx+2y+z+zx+y+2z≤c≤xx+2y+z+yx+y+2z+z2x+y+z对于任意正数x,y,z恒成立?试证明你的结论.-数学
设x,y,z∈R+,求证:2x2y+z+2y2z+x+2z2x+y≥x+y+z.-数学
已知正数a,b,c,d满足a+b=c+d,且a<c≤d<b,求证:a+b<c+d.-数学
数列{an}的通项an=,用二项式定理证明:an<。-高二数学
已知f(n)=1+12+13+…+1n,n∈n*,求证:(1)当m<n(m∈N*)时,f(n)-f(m)>n-mn;(2)当n>1时,f(2n)>n+22;(3)对于任意给定的正数M,总能找到一个正整
已知a,b,c,d是实数,用分析法证明:a2+b2+c2+d2≥(a+c)2+(b+d)2.-数学
分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的()A.必要条件B.充分条件C.充要条件D.必要或充分条件-数学
已知x,y,z∈R+,求证:(1)(x+y+z)3≥27xyz;(2)(xy+yz+zx)(yx+zy+xz)≥9;(3)(x+y+z)(x2+y2+z2)≥9xyz.-数学
用分析法证明:6+7>22+5.-数学
用分析法证明:6+7>22+5.-数学
设a,b,c均为大于1的正数,且ab=10。求证:logac+logbc≥4lgc。-高二数学
(1)已知a,b>0,求证:a(b2+c2)+b(c2+a2)≥4abc.(2)求证:3+7<25.-数学
已知:在△ABC内任取一点D,连接AD,BD,点E在△ABC外,∠EBC=∠ABD,∠ECB=∠DAB,求证:△DBE∽△ABC.-数学
已知a、b是正实数,证明a+b≤2a+b2.-数学
求证:。-高二数学
已知a、b、c是不全相等的正数。求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc。-高二数学
(1)已知n≥0,试用分析法证明:n+2-n+1<n+1-n(2)已知a,b,c是全不相等的正实数,求证b+c-aa+a+c-bb+a+b-cc>3.-数学
已知a,b,c是不全相等的正数,求证:a(b2+c2)+b(a2+c2)+c(a2+b2)>6abc.-数学
(几何证明选讲选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则BE=______.-数学
(1)用反证法证明:在一个三角形中,至少有一个内角大于或等于60°.(2)已知n≥0,试用分析法证明:n+2-n+1<n+1-n.-数学
(1)设a,b,c均为正实数,且a≠b≠c,求证:a3+b3>a2b+ab2(2)求证:3+22<2+7.-数学
在某两个正数x,y之间,若插入一个数a,使x,a,y成等差数列,若插入两个数b,c,使x,b,c,y成等比数列。求证:(a+1)2≥(b+1)(c+1)。-高二数学
返回顶部
题目简介
求证:(1)n≥0,试用分析法证明,n+2-n+1<n+1-n,(2)当a、b、c为正数时,(a+b+c)(1a+1b+1c)≥9.相等的非零实数.用反证法证明三个方程ax2+2bx+c=0,bx2+
题目详情
(2)当a、b、c为正数时,(a+b+c)(
相等的非零实数.用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
答案
即证 (
即证1>0,而1>0 显然成立,所以原命题成立.
(2)证明:假设三个方程中都没有两个相异实根,则△1=4b2-4ac≤0,△2=4c2-4ab≤0,
△3=4a2-4bc≤0. 相加有 a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0.①由题意a、b、c互不相等,∴①式不能成立.
∴假设不成立,即三个方程中至少有一个方程有两个相异实根.