设函数f(x)=x33+a2x2+bx+c(a,b,c∈R),函数f(x)的导数记为f'(x).(1)若a=f'(2),b=f'(1),c=f'(0),求a、b

题目简介

设函数f(x)=x33+a2x2+bx+c(a,b,c∈R),函数f(x)的导数记为f'(x).(1)若a=f'(2),b=f'(1),c=f'(0),求a、b

题目详情

设函数f(x)=
x3
3
+
a
2
x2+bx+c(a,b,c∈
R),函数f(x)的导数记为f'(x).
(1)若a=f'(2),b=f'(1),c=f'(0),求a、b、c的值;
(2)在(1)的条件下,记F(n)=
1
f′(n)+2
,求证:F(1)+F(2)+F(3)+…+F(n)<
11
18
(n∈
N*);
(3)设关于x的方程f'(x)=0的两个实数根为α、β,且1<α<β<2.试问:是否存在正整数n0,使得|f′(n0)|≤
1
4
?说明理由.
题型:解答题难度:中档来源:不详

答案

(1)f'(x)=x2+ax+b,由已知可得a=-1,b=c=-3.…(4分)
(2)f′(n)=n2-n-3,F(n)=class="stub"1
f′(n)+2
=class="stub"1
n2-n-1

当n=1时,F(1)=-1<class="stub"11
18
;当n=2时,F(1)+F(2)=-1+1=0<class="stub"11
18

当n≥3时,F(n)=class="stub"1
n2-n-1
<class="stub"1
n2-n-2
=class="stub"1
(n+1)(n-2)
=class="stub"1
3
(class="stub"1
n-2
-class="stub"1
n+1
)

所以F(1)+F(2)+F(3)+…+F(n)<F(1)+F(2)+class="stub"1
3
[(1-class="stub"1
4
)+(class="stub"1
2
-class="stub"1
5
)+(class="stub"1
3
-class="stub"1
6
)+
…+(class="stub"1
n-2
-class="stub"1
n+1
)]=class="stub"1
3
[1+class="stub"1
2
+class="stub"1
3
-class="stub"1
n-1
-class="stub"1
n
-class="stub"1
n+1
]<class="stub"11
18

=class="stub"1
3
(1+class="stub"1
2
+class="stub"1
3
-class="stub"1
n-1
-class="stub"1
n
-class="stub"1
n+1
 )<class="stub"1
3
 (1+class="stub"1
2
+class="stub"1
3
 )=class="stub"11
18

所以F(1)+F(2)+F(3)+…+F(n)<class="stub"11
18
(n∈
N*).…(9分)
(3)根据题设,可令f'(x)=(x-α)(x-β).
∴f'(1)•f'(2)=(1-α)(1-β)(2-α)(2-β)
=(α-1)(2-α)(β-1)(2-β)≤[
(α-1)+(2-α)
2
]2[
(β-1)+(2-β)
2
]2=class="stub"1
16

0<|f′(1)|≤class="stub"1
4
,或0<|f′(2)|≤class="stub"1
4
,所以存在n0=1或2,使|f′(n0)|≤class="stub"1
4
.…(13分).

更多内容推荐