(1)已知n≥0,试用分析法证明:n+2-n+1<n+1-n(2)已知a,b,c是全不相等的正实数,求证b+c-aa+a+c-bb+a+b-cc>3.-数学

题目简介

(1)已知n≥0,试用分析法证明:n+2-n+1<n+1-n(2)已知a,b,c是全不相等的正实数,求证b+c-aa+a+c-bb+a+b-cc>3.-数学

题目详情

(1)已知n≥0,试用分析法证明:
n+2
-
n+1
n+1
-
n

(2)已知a,b,c是全不相等的正实数,求证
b+c-a
a
+
a+c-b
b
+
a+b-c
c
>3
题型:解答题难度:中档来源:不详

答案

证明:(1)要证上式成立,即证
n+2
+
n
>2
n+1

(
n+2
+
n
)
2
(2
n+1
)
2

即证n+1>
n2+2n

即(n+1)2>n2+2n即n2+2n+1>n2+2n,即证1>0,显然成立;
所以原命题成立
(2)证明:(分析法)
要证 class="stub"b+c-a
a
+class="stub"a+c-b
b
+class="stub"a+b-c
c
>3,
只需证明 class="stub"b
a
+class="stub"c
a
-1+class="stub"c
b
+class="stub"a
b
-1+class="stub"a
c
+class="stub"b
c
-1>3
即证class="stub"b
a
+class="stub"c
a
+class="stub"c
b
+class="stub"a
b
+class="stub"a
c
+class="stub"b
c
>6,
而事实上,由a,b,c是全不相等的正实数,
class="stub"b
a
+class="stub"a
b
>2,class="stub"c
a
+class="stub"a
c
>2,class="stub"c
b
+class="stub"b
c
>2
class="stub"b
a
+class="stub"c
a
+class="stub"c
b
+class="stub"a
b
+class="stub"a
c
+class="stub"b
c
>6,
class="stub"b+c-a
a
+class="stub"a+c-b
b
+class="stub"a+b-c
c
>3,得证.

更多内容推荐