设x>0,y>0,z>0,(Ⅰ)比较x2x+y与3x-y4的大小;(Ⅱ)利用(Ⅰ)的结论,证明:x3x+y+y3y+z+z3z+x≥xy+yz+zx2.-数学

题目简介

设x>0,y>0,z>0,(Ⅰ)比较x2x+y与3x-y4的大小;(Ⅱ)利用(Ⅰ)的结论,证明:x3x+y+y3y+z+z3z+x≥xy+yz+zx2.-数学

题目详情

设x>0,y>0,z>0,
(Ⅰ)比较
x2
x+y
3x-y
4
的大小;
(Ⅱ)利用(Ⅰ)的结论,证明:
x3
x+y
+
y3
y+z
+
z3
z+x
xy+yz+zx
2
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵
x2
x+y
-class="stub"3x-y
4
=
(x-y)2
4(x+y)
≥0
,∴
x2
x+y
≥class="stub"3x-y
4
.(5分)
(Ⅱ)由(1)得
x3
x+y
3x2-xy
4

类似的
y3
y+z
3y2-yz
4
z3
z+x
3z2-zx
4
,(7分)
x2+y2+z2-(xy+yz+zx)=class="stub"1
2
[(x-y)2+(y-z)2+(z-x)2]≥0

∴x2+y2+z2≥xy+yz+zx(9分)(另证:x2+y2≥2xy,y2+z2≥2yz,z2+x2≥2zx,三式相加).
x3
x+y
+
y3
y+z
+
z3
z+x
3x2-xy+3y2-yz+3z2-zx
4
=
3(x2+y2+z2)-xy-yz-zx
4
3(xy+yz+zx)-xy-yz-zx
4
=class="stub"xy+yz+zx
2
(12分)

更多内容推荐