已知函数(1)试判断f(x)的单调性,并说明理由;(2)若恒成立,求实数k的取值范围;(3)求证:[(n+1)!]2>(n+1)en﹣2,(n∈N*).-高三数学

题目简介

已知函数(1)试判断f(x)的单调性,并说明理由;(2)若恒成立,求实数k的取值范围;(3)求证:[(n+1)!]2>(n+1)en﹣2,(n∈N*).-高三数学

题目详情

已知函数
(1)试判断f(x)的单调性,并说明理由;
(2)若恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)e n﹣2,(n∈N*).
题型:解答题难度:偏难来源:湖南省模拟题

答案

(1)解:求导函数,可得=
∵x≥1,∴lnx≥0,∴f '(x)≤0,
∴函数f(x)在[1,+∞)上单调减 ∴函数f(x)的单调减区间是[1,+∞).
(2)解:不等式,即为

所以
令h(x)=x﹣lnx,

∵x≥1,∴h'(x)≥0.
∴h(x)在[1,+∞)上单调递增,
∴[h(x)]min=h(1)=1>0,从而g'(x)>0
故g(x)在[1,+∞)上也单调递增,
∴[g(x)]min=g(1)=2,
所以k≤2
(3)证明:由(2)知:恒成立,即
令x=n(n+1),则
所以,…,
叠加得:ln[1×22×32×…×n2×(n+1)]=
则1×22×32×…×n2×(n+1)>e n﹣2,
所以 [(n+1)!]2>(n+1)e n﹣2,(n∈N*).

更多内容推荐