设函数f(x)=xlnx(x>0).(1)求函数f(x)的最小值;(2)设F(x)=ax2+f'(x)(a∈R),讨论函数F(x)的单调性;(3)斜率为k的直线与曲线y=f'(x)

题目简介

设函数f(x)=xlnx(x>0).(1)求函数f(x)的最小值;(2)设F(x)=ax2+f'(x)(a∈R),讨论函数F(x)的单调性;(3)斜率为k的直线与曲线y=f'(x)

题目详情

设函数f(x)=xlnx(x>0).
(1)求函数f(x)的最小值;
(2)设F(x)=ax2+f'(x)(a∈R),讨论函数F(x)的单调性;
(3)斜率为k的直线与曲线y=f'(x)交于A(x1,y1)、B(x2,y2)(x1<x2)两点,求证:
题型:解答题难度:偏难来源:四川省期末题

答案

(1)解:f'(x)=lnx+1(x>0),令f'(x)=0,得.(2分)
∵当时,f'(x)<0;当时,f'(x)>0,
∴当时,
(2)F(x)=ax2+lnx+1(x>0),
①当a≥0时,恒有F'(x)>0,F(x)在(0,+∞)上是增函数;
②当a<0时,令F'(x)>0,得2ax2+1>0,解得
令F'(x)<0,得2ax2+1<0,解得
综上,当a≥0时,F(x)在(0,+∞)上是增函数;当a<0时,F(x)在上单调递增,在上单调递减.
(3)证:
要证,即证
等价于证

则只要证,由t>1知lnt>0,故等价于证lnt<t﹣1<tlnt(t>1)(*).
①设g(t)=t﹣1﹣lnt(t≥1),则
故g(t)在[1,+∞)上是增函数,
∴当t>1时,g(t)=t﹣1﹣lnt>g(1)=0,即t﹣1>lnt(t>1).
②设h(t)=tlnt﹣(t﹣1)(t≥1),则h'(t)=lnt≥0(t≥1),
故h(t)在[1,+∞)上是增函数,
∴当t>1时,h(t)=tlnt﹣(t﹣1)>h(1)=0,即t﹣1<tlnt(t>1).
由①②知(*)成立,得证.

更多内容推荐