已知函数的图象为曲线C,函数的图象为直线l.(Ⅰ)设m>0,当x∈(m,+∞)时,证明:(Ⅱ)设直线l与曲线C的交点的横坐标分别为x1,x2,且x1≠x2,求证:(x1+x2)g(x1+x2)>2.-

题目简介

已知函数的图象为曲线C,函数的图象为直线l.(Ⅰ)设m>0,当x∈(m,+∞)时,证明:(Ⅱ)设直线l与曲线C的交点的横坐标分别为x1,x2,且x1≠x2,求证:(x1+x2)g(x1+x2)>2.-

题目详情

已知函数的图象为曲线C,函数的图象为直线l.
(Ⅰ) 设m>0,当x∈(m,+∞)时,证明:
(Ⅱ) 设直线l与曲线C的交点的横坐标分别为x1,x2,且x1≠x2,求证:(x1+x2)g(x1+x2)>2.
题型:解答题难度:偏难来源:湖南省月考题

答案

证明:(1)令H(x)=(x+m)ln﹣2(x﹣m),x∈(m,+∞),
则H(m)=0,
要证明(x+m)ln﹣2(x﹣m)>0,
只需证H(x)=(x+m)ln﹣2(x﹣m)>H(m),
∵H′(x)=ln+﹣1,
令G(x)=ln+﹣1,G′(x)=
由G′(x)=>0得,x>m,
∴G(x)在x∈(m,+∞)单调递增,
∴G(x)>G(m)=0
H'(x)>0,H(x)在x∈(m,+∞)单调递增.
H(x)>H(m)=0,
∴H(x)=(x+m)ln﹣2(x﹣m)>0,
(2)不妨设0<x1<x2,
要证(x1+x2)g(x1+x2)>2,
只需证(x1+x2)[a(x1+x2)+b]>2,
只需证(x1+x2)[a+bx2﹣(a+bx1)]>2(x2﹣x1),
=ax1+b,=ax2+b,
即(x1+x2)ln>2(x2﹣x1)(*),
而由(1)知(*)成立.
所以(x1+x2)g(x1+x2)>2

更多内容推荐