已知x,y,z∈R+,求证:(1)(x+y+z)3≥27xyz;(2)(xy+yz+zx)(yx+zy+xz)≥9;(3)(x+y+z)(x2+y2+z2)≥9xyz.-数学

题目简介

已知x,y,z∈R+,求证:(1)(x+y+z)3≥27xyz;(2)(xy+yz+zx)(yx+zy+xz)≥9;(3)(x+y+z)(x2+y2+z2)≥9xyz.-数学

题目详情

已知x,y,z∈R+,求证:
(1)(x+y+z)3≥27xyz;  
(2)(
x
y
+
y
z
+
z
x
)(
y
x
+
z
y
+
x
z
)≥9
;  
(3)(x+y+z)(x2+y2+z2)≥9xyz.
题型:解答题难度:中档来源:不详

答案

证明:(1)∵x,y,z∈R+,∴x+y+z≥3
3xyz
,当且仅当x=y=z时,取等号,∴(x+y+z)3≥27xyz;  
(2)∵x,y,z∈R+,∴class="stub"x
y
+class="stub"y
z
+class="stub"z
x
3
3class="stub"x
y
?class="stub"y
z
?class="stub"z
x
=3,class="stub"y
x
+class="stub"z
y
+class="stub"x
z
3
3class="stub"y
x
?class="stub"z
y
?class="stub"x
z
=3,当且仅当x=y=z时,取等号,
∴两式相乘,可得(class="stub"x
y
+class="stub"y
z
+class="stub"z
x
)(class="stub"y
x
+class="stub"z
y
+class="stub"x
z
)≥9

(3))∵x,y,z∈R+,∴x+y+z≥3
3xyz
,x2+y2+z2≥3
3x2y2z2
,当且仅当x=y=z时,取等号,
∴两式相乘可得(x+y+z)(x2+y2+z2)≥9xyz.

更多内容推荐