设函数f(x)=loga|x|在(-∞,0)上单调递增,则f(a+1)与f(2)的大小关系是()A.f(a+1)=f(2)B.f(a+1)>f(2)C.f(a+1)<f(2)D.不能确定-数学

题目简介

设函数f(x)=loga|x|在(-∞,0)上单调递增,则f(a+1)与f(2)的大小关系是()A.f(a+1)=f(2)B.f(a+1)>f(2)C.f(a+1)<f(2)D.不能确定-数学

题目详情

设函数f(x)=loga|x|在(-∞,0)上单调递增,则f(a+1)与f(2)的大小关系是(  )
A.f(a+1)=f(2)B.f(a+1)>f(2)C.f(a+1)<f(2)D.不能确定
题型:单选题难度:偏易来源:安徽模拟

答案

由f(x)=
loga(-x),x∈(-∞,0)
logax,x∈(0,+∞)

且f(x)在(-∞,0)上单调递增,易得0<a<1.
∴1<a+1<2.
又∵f(x)是偶函数,
∴f(x)在(0,+∞)上单调递减.
∴f(a+1)>f(2).
答案:B

更多内容推荐