(1)已知tanα=2,求sin(π-α)cos(2π-α)sin(-α+3π2)tan(-α-π)sin(-π-α)的值(2)已知cos(75°+α)=13,其中-180°<α<-90°,求sin(

题目简介

(1)已知tanα=2,求sin(π-α)cos(2π-α)sin(-α+3π2)tan(-α-π)sin(-π-α)的值(2)已知cos(75°+α)=13,其中-180°<α<-90°,求sin(

题目详情

(1)已知tanα=2,求
sin(π-α)cos(2π-α)sin(-α+
2
)
tan(-α-π)sin(-π-α)
的值
(2)已知cos(75°+α)=
1
3
,其中-180°<α<-90°,求sin(105°-α)+cos(375°-α)的值.
题型:解答题难度:中档来源:不详

答案

(1)原式=
sinαcosα(-cosα)
(-tanα)sinα
(2分)
=
cos2α
tanα
(3分)
tanα=2,class="stub"1
cos2α
=1+tan2α=5

cos2α=class="stub"1
5
(6分),∴原式=class="stub"1
10
(7分)

(2)原式=sin(75°+α)+cos(15°-α)=2sin(75°+α)(9分)
cos(75°+α)=class="stub"1
3
,且-105°<75°+α<-15°,
∴sin(75°+α)<0∴sin(75°+α)=-
1-sin(75°+α)
=-
2
2
3
(12分)
故原式=-class="stub"4
3
2
(14分)

更多内容推荐